ترغب بنشر مسار تعليمي؟ اضغط هنا

Independent Innovation Analysis for Nonlinear Vector Autoregressive Process

64   0   0.0 ( 0 )
 نشر من قبل Hiroshi Morioka
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonlinear vector autoregressive (NVAR) model provides an appealing framework to analyze multivariate time series obtained from a nonlinear dynamical system. However, the innovation (or error), which plays a key role by driving the dynamics, is almost always assumed to be additive. Additivity greatly limits the generality of the model, hindering analysis of general NVAR processes which have nonlinear interactions between the innovations. Here, we propose a new general framework called independent innovation analysis (IIA), which estimates the innovations from completely general NVAR. We assume mutual independence of the innovations as well as their modulation by an auxiliary variable (which is often taken as the time index and simply interpreted as nonstationarity). We show that IIA guarantees the identifiability of the innovations with arbitrary nonlinearities, up to a permutation and component-wise invertible nonlinearities. We also propose three estimation frameworks depending on the type of the auxiliary variable. We thus provide the first rigorous identifiability result for general NVAR, as well as very general tools for learning such models.



قيم البحث

اقرأ أيضاً

Due to its high computational speed and accuracy compared to ab-initio quantum chemistry and forcefield modeling, the prediction of molecular properties using machine learning has received great attention in the fields of materials design and drug di scovery. A main ingredient required for machine learning is a training dataset consisting of molecular featurestextemdash for example fingerprint bits, chemical descriptors, etc. that adequately characterize the corresponding molecules. However, choosing features for any application is highly non-trivial. No universal method for feature selection exists. In this work, we propose a data fusion framework that uses Independent Vector Analysis to exploit underlying complementary information contained in different molecular featurization methods, bringing us a step closer to automated feature generation. Our approach takes an arbitrary number of individual feature vectors and automatically generates a single, compact (low dimensional) set of molecular features that can be used to enhance the prediction performance of regression models. At the same time our methodology retains the possibility of interpreting the generated features to discover relationships between molecular structures and properties. We demonstrate this on the QM7b dataset for the prediction of several properties such as atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. In addition, we show how our method helps improve the prediction of experimental binding affinities for a set of human BACE-1 inhibitors. To encourage more widespread use of IVA we have developed the PyIVA Python package, an open source code which is available for download on Github.
We introduce coroICA, confounding-robust independent component analysis, a novel ICA algorithm which decomposes linearly mixed multivariate observations into independent components that are corrupted (and rendered dependent) by hidden group-wise stat ionary confounding. It extends the ordinary ICA model in a theoretically sound and explicit way to incorporate group-wise (or environment-wise) confounding. We show that our proposed general noise model allows to perform ICA in settings where other noisy ICA procedures fail. Additionally, it can be used for applications with grouped data by adjusting for different stationary noise within each group. Our proposed noise model has a natural relation to causality and we explain how it can be applied in the context of causal inference. In addition to our theoretical framework, we provide an efficient estimation procedure and prove identifiability of the unmixing matrix under mild assumptions. Finally, we illustrate the performance and robustness of our method on simulated data, provide audible and visual examples, and demonstrate the applicability to real-world scenarios by experiments on publicly available Antarctic ice core data as well as two EEG data sets. We provide a scikit-learn compatible pip-installable Python package coroICA as well as R and Matlab implementations accompanied by a documentation at https://sweichwald.de/coroICA/
In the last two decades, unsupervised latent variable models---blind source separation (BSS) especially---have enjoyed a strong reputation for the interpretable features they produce. Seldom do these models combine the rich diversity of information a vailable in multiple datasets. Multidatasets, on the other hand, yield joint solutions otherwise unavailable in isolation, with a potential for pivotal insights into complex systems. To take advantage of the complex multidimensional subspace structures that capture underlying modes of shared and unique variability across and within datasets, we present a direct, principled approach to multidataset combination. We design a new method called multidataset independent subspace analysis (MISA) that leverages joint information from multiple heterogeneous datasets in a flexible and synergistic fashion. Methodological innovations exploiting the Kotz distribution for subspace modeling in conjunction with a novel combinatorial optimization for evasion of local minima enable MISA to produce a robust generalization of independent component analysis (ICA), independent vector analysis (IVA), and independent subspace analysis (ISA) in a single unified model. We highlight the utility of MISA for multimodal information fusion, including sample-poor regimes and low signal-to-noise ratio scenarios, promoting novel applications in both unimodal and multimodal brain imaging data.
Traditionally, Hawkes processes are used to model time--continuous point processes with history dependence. Here we propose an extended model where the self--effects are of both excitatory and inhibitory type and follow a Gaussian Process. Whereas pr evious work either relies on a less flexible parameterization of the model, or requires a large amount of data, our formulation allows for both a flexible model and learning when data are scarce. We continue the line of work of Bayesian inference for Hawkes processes, and our approach dispenses with the necessity of estimating a branching structure for the posterior, as we perform inference on an aggregated sum of Gaussian Processes. Efficient approximate Bayesian inference is achieved via data augmentation, and we describe a mean--field variational inference approach to learn the model parameters. To demonstrate the flexibility of the model we apply our methodology on data from three different domains and compare it to previously reported results.
In recent years, manifold methods have moved into focus as tools for dimension reduction. Assuming that the high-dimensional data actually lie on or close to a low-dimensional nonlinear manifold, these methods have shown convincing results in several settings. This manifold assumption is often reasonable for functional data, i.e., data representing continuously observed functions, as well. However, the performance of manifold methods recently proposed for tabular or image data has not been systematically assessed in the case of functional data yet. Moreover, it is unclear how to evaluate the quality of learned embeddings that do not yield invertible mappings, since the reconstruction error cannot be used as a performance measure for such representations. In this work, we describe and investigate the specific challenges for nonlinear dimension reduction posed by the functional data setting. The contributions of the paper are three-fold: First of all, we define a theoretical framework which allows to systematically assess specific challenges that arise in the functional data context, transfer several nonlinear dimension reduction methods for tabular and image data to functional data, and show that manifold methods can be used successfully in this setting. Secondly, we subject performance assessment and tuning strategies to a thorough and systematic evaluation based on several different functional data settings and point out some previously undescribed weaknesses and pitfalls which can jeopardize reliable judgment of embedding quality. Thirdly, we propose a nuanced approach to make trustworthy decisions for or against competing nonconforming embeddings more objectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا