ﻻ يوجد ملخص باللغة العربية
Graphene - a single atomic layer of graphite - is a recently-found two-dimensional form of carbon, which exhibits high crystal quality and ballistic electron transport at room temperature. Soft magnetic NiFe electrodes have been used to inject polarized spins into graphene and a 10% change in resistance has been observed as the electrodes switch from the parallel to the antiparallel state. This coupled with the fact that a field effect electrode can modulate the conductivity of these graphene films makes them exciting potential candidates for spin electronic devices.
Hydrogen adsorbates in graphene are interesting as they are not only strong Coulomb scatterers but they also induce a change in orbital hybridization of the carbon network from sp^2 into sp^3. This change increases the spin-orbit coupling and is expe
The carbon isotope $^{13}$C, in contrast to $^{12}$C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of $^{13}$C in natural carbon allotropes ($sim$1 %
We discuss the influence of the magneto-coulomb effect (MCE) on the magnetoconductance of spin valve devices. We show that MCE can induce magnetoconductances of several per cents or more, dependent on the strength of the coulomb blockade. Furthermore
By successive oxygen treatments of graphene non-local spin-valve devices we achieve a gradual increase of the contact resistance area products ($R_cA$) of Co/MgO spin injection and detection electrodes and a transition from linear to non-linear chara
We investigate spin and charge transport in both single and bilayer graphene non-local spin-valve devices. Similar to previous studies on bilayer graphene, we observe an inverse dependence of the spin lifetime on the carrier mobility in our single la