ﻻ يوجد ملخص باللغة العربية
The orientation dynamics of small anisotropic tracer particles in turbulent flows is studied using direct numerical simulation (DNS) and results are compared with Lagrangian stochastic models. Generalizing earlier analysis for axisymmetric ellipsoidal particles (Parsa et al. 2012), we measure the orientation statistics and rotation rates of general, triaxial ellipsoidal tracer particles using Lagrangian tracking in DNS of isotropic turbulence. Triaxial ellipsoids that are very long in one direction, very thin in another, and of intermediate size in the third direction exhibit reduced rotation rates that are similar to those of rods in the ellipsoids longest direction, while exhibiting increased rotation rates that are similar to those of axisymmetric discs in the thinnest direction. DNS results differ significantly from the case when the particle orientations are assumed to be statistically independent from the velocity gradient tensor. They are also different from predictions of a Gaussian process for the velocity gradient tensor, which does not provide realistic preferred vorticity-strain-rate tensor alignments. DNS results are also compared with a stochastic model for the velocity gradient tensor based on the recent fluid deformation approximation (RFDA). Unlike the Gaussian model, the stochastic model accurately predicts the reduction in rotation rate in the longest direction of triaxial ellipsoids since this direction aligns with the flows vorticity, with its rotation perpendicular to the vorticity being reduced. For disc-like particles, or in directions perpendicular to the longest direction in triaxial particles, the model predicts {noticeably} smaller rotation rates than those observed in DNS, a behavior that can be understood based on the probability of vorticity orientation with the most contracting strain-rate eigen-direction in the model.
We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence, based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and direct contact forces. We observe a transient flocculation phase character
Small scale characteristics of turbulence such as velocity gradients and vorticity fluctuate rapidly in magnitude and oscillate in sign. Much work exists on the characterization of magnitude variations, but far less on sign oscillations. While averag
We present an experimental study on the settling velocity of dense sub-Kolmogorov particles in active-grid-generated turbulence in a wind tunnel. Using phase Doppler interferometry, we observe that the modifications of the settling velocity of inerti
We analyze the vector nulls of velocity, Lagrangian acceleration, and vorticity, coming from direct numerical simulations of forced homogeneous isotropic turbulence at $Re_lambda in [40-610]$. We show that the clustering of velocity nulls is much str
Ice crystals settling through a turbulent cloud are rotated by turbulent velocity gradients. In the same way, turbulence affects the orientation of aggregates of organic matter settling in the ocean. In fact most solid particles encountered in Nature