ترغب بنشر مسار تعليمي؟ اضغط هنا

Cancellation exponents in isotropic turbulence and magnetohydrodynamic turbulence

122   0   0.0 ( 0 )
 نشر من قبل Xiaomeng Zhai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Small scale characteristics of turbulence such as velocity gradients and vorticity fluctuate rapidly in magnitude and oscillate in sign. Much work exists on the characterization of magnitude variations, but far less on sign oscillations. While averages performed on large scales tend to zero because of the oscillatory character, those performed on increasingly smaller scales will vary with the averaging scale in some characteristic way. This characteristic variation at high Reynolds numbers is captured by the so-called cancellation exponent, which measures how local averages tend to cancel out as the averaging scale increases, in space or time. Past experimental work suggests that the exponents in turbulence depend on whether one considers quantities in full three-dimensional space or uses their one- or two-dimensional cuts. We compute cancellation exponents of vorticity and longitudinal as well as transverse velocity gradients in isotropic turbulence at Taylor-scale Reynolds number up to 1300 on $8192^3$ grids. The 2D cuts yield the same exponents as those for full 3D, while the 1D cuts yield smaller numbers, suggesting that the results in higher dimensions are more reliable. We make the case that the presence of vortical filaments in isotropic turbulence leads to this conclusion. This effect is particularly conspicuous in magnetohydrodynamic turbulence, where an increased degree of spatial coherence develops along the imposed magnetic field.



قيم البحث

اقرأ أيضاً

324 - P.D. Mininni 2010
This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the developm ent of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, or the development of anisotropies, can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and non-local transfers are discussed for each case. While the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or non-local depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed.
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shel l models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfven waves and the Hall effect.
In an earlier paper (Wan et al. 2012), the authors showed that a similarity solution for anisotropic incompressible 3D magnetohydrodynamic (MHD) turbulence, in the presence of a uniform mean magnetic field $vB_0$, exists if the ratio of parallel to p erpendicular (with respect to $vB_0$) similarity length scales remains constant in time. This conjecture appears to be a rather stringent constraint on the dynamics of decay of the energy-containing eddies in MHD turbulence. However, we show here, using direct numerical simulations, that this hypothesis is indeed satisfied in incompressible MHD turbulence. After an initial transient period, the ratio of parallel to perpendicular length scales fluctuates around a steady value during the decay of the eddies. We show further that a Taylor--Karman-like similarity decay holds for MHD turbulence in the presence of a mean magnetic field. The effect of different parameters, including Reynolds number, DC field strength, and cross-helicity, on the nature of similarity decay is discussed.
In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with $Re_{lambda}=400$. Both the energy dissipation rat e $epsilon$ and the local time averaged $epsilon_{tau}$ agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function $rho(tau)$ of $ln(epsilon(t))$ and variance $sigma^2(tau)$ of $ln(epsilon_{tau}(t))$ obey a log-law with scaling exponent $beta=beta=0.30$ compatible with the intermittency parameter $mu=0.30$. The $q$th-order moment of $epsilon_{tau}$ has a clear power-law on the inertial range $10<tau/tau_{eta}<100$. The measured scaling exponent $K_L(q)$ agrees remarkably with $q-zeta_L(2q)$ where $zeta_L(2q)$ is the scaling exponent estimated using the Hilbert methodology. All these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.
The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can pla y a significant role in turbulent systems, e.g., supporting the generation of large-scale magnetic fields, but its impact on the energy cascade to small scales has never been observed. We suggest for the first time a generalized phenomenology for isotropic turbulence with an arbitrary spectral distribution of the helicity. We discuss various scenarios of direct turbulent cascades with new helicity effect, which can be interpreted as a hindering of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that the efficiency of non-linear interactions will be sufficient to provide a constant energy flux. We confirm our phenomenology by high Reynolds number numerical simulations based on a shell model of helical turbulence. The energy in our model is injected at a certain large scale only, whereas the source of helicity is distributed over all scales. In particular, we found that the helical bottleneck effect can appear in the inertial interval of the energy spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا