ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory for the effect of fluid inertia on the orientation of a small particle settling in turbulence

90   0   0.0 ( 0 )
 نشر من قبل Bernhard Mehlig
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ice crystals settling through a turbulent cloud are rotated by turbulent velocity gradients. In the same way, turbulence affects the orientation of aggregates of organic matter settling in the ocean. In fact most solid particles encountered in Nature are not spherical, and their orientation affects their settling speed, as well as collision rates between particles. Therefore it is important to understand the distribution of orientations of non-spherical particles settling in turbulence. Here we study the angular dynamics of small prolate spheroids settling in homogeneous isotropic turbulence. We consider a limit of the problem where the fluid torque due to convective inertia dominates, so that rods settle essentially horizontally. Turbulence causes the orientation of the settling particles to fluctuate, and we calculate their orientation distribution for prolate spheroids with arbitrary aspect ratios for large settling number Sv (a dimensionless measure of the settling speed), assuming small Stokes number St (a dimensionless measure of particle inertia). This overdamped theory predicts that the orientation distribution is very narrow at large Sv, with a variance proportional to ${rm Sv}^{-4}$. By considering the role of particle inertia, we analyse the limitations of the overdamped theory, and determine its range of applicability. Our predictions are in excellent agreement with numerical simulations of simplified models of turbulent flows. Finally we contrast our results with those of an alternative theory predicting that the orientation variance scales as ${rm Sv}^{-2}$ at large Sv.

قيم البحث

اقرأ أيضاً

Small non-spherical particles settling in a quiescent fluid tend to orient so that their broad side faces down, because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomises the orientations t o some extent, and this affects the reflection patterns of polarised light from turbulent clouds containing ice crystals. An overdamped theory predicts that turbulence-induced fluctuations of the orientation are very small when the settling number Sv (a dimensionless measure of the settling speed) is large. At small Sv, by contrast, the overdamped theory predicts that turbulence randomises the orientations. This overdamped theory neglects the effect of particle inertia. Therefore we consider here how particle inertia affects the orientation of small crystals settling in turbulent air. We find that it can significantly increase the orientation variance, even when the Stokes number St (a dimensionless measure of particle inertia) is quite small. We identify different asymptotic parameter regimes where the tilt-angle variance is proportional to different inverse powers of Sv. We estimate parameter values for ice crystals in turbulent clouds and show that they cover several of the identified regimes. The theory predicts how the degree of alignment depends on particle size, shape and turbulence intensity, and that the strong horizontal alignment of small crystals is only possible when the turbulent energy dissipation is weak, of the order of $1,$cm$^2$/s$^3$ or less.
The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling throu gh quiescent fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers based on the mean descent velocity $0.75 times 10^4 lesssim Ar lesssim 2.75 times 10^4$. Turbulence reaching a Reynolds number of $Re_lambda approx 100$ is generated in a water tank using random jet arrays mounted in a co-planar configuration. After the flow becomes statistically stationary, a particle is released and its three-dimensional motion is recorded using two orthogonally positioned high-speed cameras. We propose a simple pendulum model that accurately captures the velocity fluctuations of the particles in still fluid and find that differences in the falling style might be explained by a closer alignment between the particles pitch angle and its velocity vector. By comparing the trajectories under background turbulence with the quiescent fluid cases, we measure a decrease in the mean descent velocity in turbulence for the conditions tested. We also study the secondary motion of the particles and identify descent events that are unique to turbulence such as long gliding and rapid rotation events. Lastly, we show an increase in the radial dispersion of the particles under background turbulence and correlate the timescale of descent events with the local settling velocity.
We present an experimental study on the settling velocity of dense sub-Kolmogorov particles in active-grid-generated turbulence in a wind tunnel. Using phase Doppler interferometry, we observe that the modifications of the settling velocity of inerti al particles, under homogeneous isotropic turbulence and dilute conditions $phi_vleq O(10)^{-5}$, is controlled by the Taylor-based Reynolds number $Re_lambda$ of the carrier flow. On the contrary, we did not find a strong influence of the ratio between the fluid and gravity accelerations (i.e., $gammasim(eta/tau_eta^2)/g$) on the particle settling behavior. Remarkably, our results suggest that the hindering of the settling velocity (i.e. the measured particle settling velocity is smaller than its respective one in still fluid conditions) experienced by the particles increases with the value of $Re_lambda$, reversing settling enhancement found under intermediate $Re_lambda$ conditions. This observation applies to all particle sizes investigated, and it is consistent with previous experimental data in the literature. At the highest $Re_lambda$ studied, $Re_lambda>600$, the particle enhancement regime ceases to exist. Our data also show that for moderate Rouse numbers, the difference between the measured particle settling velocity and its velocity in still fluid conditions scales linearly with Rouse, when this difference is normalized by the carrier phase rms fluctuations, i.e., $(V_p-V_T)/usim -Ro$.
The orientation dynamics of small anisotropic tracer particles in turbulent flows is studied using direct numerical simulation (DNS) and results are compared with Lagrangian stochastic models. Generalizing earlier analysis for axisymmetric ellipsoida l particles (Parsa et al. 2012), we measure the orientation statistics and rotation rates of general, triaxial ellipsoidal tracer particles using Lagrangian tracking in DNS of isotropic turbulence. Triaxial ellipsoids that are very long in one direction, very thin in another, and of intermediate size in the third direction exhibit reduced rotation rates that are similar to those of rods in the ellipsoids longest direction, while exhibiting increased rotation rates that are similar to those of axisymmetric discs in the thinnest direction. DNS results differ significantly from the case when the particle orientations are assumed to be statistically independent from the velocity gradient tensor. They are also different from predictions of a Gaussian process for the velocity gradient tensor, which does not provide realistic preferred vorticity-strain-rate tensor alignments. DNS results are also compared with a stochastic model for the velocity gradient tensor based on the recent fluid deformation approximation (RFDA). Unlike the Gaussian model, the stochastic model accurately predicts the reduction in rotation rate in the longest direction of triaxial ellipsoids since this direction aligns with the flows vorticity, with its rotation perpendicular to the vorticity being reduced. For disc-like particles, or in directions perpendicular to the longest direction in triaxial particles, the model predicts {noticeably} smaller rotation rates than those observed in DNS, a behavior that can be understood based on the probability of vorticity orientation with the most contracting strain-rate eigen-direction in the model.
We use direct numerical simulations to investigate the interaction between the temperature field of a fluid and the temperature of small particles suspended in the flow, employing both one and two-way thermal coupling, in a statistically stationary, isotropic turbulent flow. Using statistical analysis, we investigate this variegated interaction at the different scales of the flow. We find that the variance of the fluid temperature gradients decreases as the thermal response time of the suspended particles is increased. The probability density function (PDF) of the fluid temperature gradients scales with its variance, while the PDF of the rate of change of the particle temperature, whose variance is associated with the thermal dissipation due to the particles, does not scale in such a self-similar way. The modification of the fluid temperature field due to the particles is examined by computing the particle concentration and particle heat fluxes conditioned on the magnitude of the local fluid temperature gradient. These statistics highlight that the particles cluster on the fluid temperature fronts, and the important role played by the alignments of the particle velocity and the local fluid temperature gradient. The temperature structure functions, which characterize the temperature fluctuations across the scales of the flow, clearly show that the fluctuations of the fluid temperature increments are monotonically suppressed in the two-way coupled regime as the particle thermal response time is increased. Thermal caustics dominate the particle temperature increments at small scales, that is, particles that come into contact are likely to have very large differences in their temperature. This is caused by the nonlocal thermal dynamics of the particles...
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا