ﻻ يوجد ملخص باللغة العربية
Ice crystals settling through a turbulent cloud are rotated by turbulent velocity gradients. In the same way, turbulence affects the orientation of aggregates of organic matter settling in the ocean. In fact most solid particles encountered in Nature are not spherical, and their orientation affects their settling speed, as well as collision rates between particles. Therefore it is important to understand the distribution of orientations of non-spherical particles settling in turbulence. Here we study the angular dynamics of small prolate spheroids settling in homogeneous isotropic turbulence. We consider a limit of the problem where the fluid torque due to convective inertia dominates, so that rods settle essentially horizontally. Turbulence causes the orientation of the settling particles to fluctuate, and we calculate their orientation distribution for prolate spheroids with arbitrary aspect ratios for large settling number Sv (a dimensionless measure of the settling speed), assuming small Stokes number St (a dimensionless measure of particle inertia). This overdamped theory predicts that the orientation distribution is very narrow at large Sv, with a variance proportional to ${rm Sv}^{-4}$. By considering the role of particle inertia, we analyse the limitations of the overdamped theory, and determine its range of applicability. Our predictions are in excellent agreement with numerical simulations of simplified models of turbulent flows. Finally we contrast our results with those of an alternative theory predicting that the orientation variance scales as ${rm Sv}^{-2}$ at large Sv.
Small non-spherical particles settling in a quiescent fluid tend to orient so that their broad side faces down, because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomises the orientations t
The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling throu
We present an experimental study on the settling velocity of dense sub-Kolmogorov particles in active-grid-generated turbulence in a wind tunnel. Using phase Doppler interferometry, we observe that the modifications of the settling velocity of inerti
The orientation dynamics of small anisotropic tracer particles in turbulent flows is studied using direct numerical simulation (DNS) and results are compared with Lagrangian stochastic models. Generalizing earlier analysis for axisymmetric ellipsoida
We use direct numerical simulations to investigate the interaction between the temperature field of a fluid and the temperature of small particles suspended in the flow, employing both one and two-way thermal coupling, in a statistically stationary,