ﻻ يوجد ملخص باللغة العربية
Usual Gaussian beams are particular scalar solutions to the paraxial Helmholtz equation, which neglect the vector nature of light. In order to overcome this inconvenience, Simon et al. (J. Opt. Soc. Am. A 1986, 3, 536-540) found a paraxial solution to Maxwells equation in vacuum, which includes polarization in a natural way, though still preserving the spatial Gaussianity of the beams. In this regard, it seems that these solutions, known as Gauss-Maxwell beams, are particularly appropriate and a natural tool in optical problems dealing with Gaussian beams acted or manipulated by polarizers. In this work, inspired in the Bohmian picture of quantum mechanics, a hydrodynamic-type extension of such a formulation is provided and discussed, complementing the notion of electromagnetic field with that of (electromagnetic) flow or streamline. In this regard, the method proposed has the advantage that the rays obtained from it render a bona fide description of the spatial distribution of electromagnetic energy, since they are in compliance with the local space changes undergone by the time-averaged Poynting vector. This feature confers the approach a potential interest in the analysis and description of single-photon experiments, because of the direct connection between these rays and the average flow exhibited by swarms of identical photons (regardless of the particular motion, if any, that these entities might have), at least in the case of Gaussian input beams. In order to illustrate the approach, here it is applied to two common scenarios, namely the diffraction undergone by a single Gauss-Maxwell beam and the interference produced by a coherent superposition of two of such beams.
We study the establishment of vortex entanglement in remote and weakly interacting Bose Einstein condensates. We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of
More than forty years ago, Barash published a calculation of the full retarded Casimir-Lifshitz torque for planar birefringent media with arbitrary degrees of anisotropy. An independent theoretical confirmation has been lacking since. We report a sys
Discrete-Gauss states are a new class of gaussian solutions of the free Schrodinger equation owning discrete rotational symmetry. They are obtained by acting with a discrete deformation operator onto Laguerre-Gauss modes. We present a general analyti
A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees
Vector vortex beams possess a topological property that derives both from the spatially varying amplitude of the field and also from its varying polarization. This property arises as a consequence of the inherent Skyrmionic nature of such beams and i