ﻻ يوجد ملخص باللغة العربية
The zig-zag symmetry transition is a phase transition in 1D quantum wires, in which a Wigner lattice of electrons transitions to two staggered lattices. Previous studies model this transition as a Luttinger liquid coupled to a Majorana fermion. The model exhibits interesting RG flows, involving quenching of velocities in subsectors of the theory. We suggest an extension of the model which replaces the Majorana fermion by a more general CFT; this includes an experimentally realizable case with two Majorana fermions. We analyse the RG flow both in field theory and using AdS/CFT techniques in the large central charge limit of the CFT. The model has a rich phase structure with new qualitative features, already in the two Majorana fermion case. The AdS/CFT calculation involves considering back reaction in space-time to capture subleading effects.
A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lac
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch
We wish to renew the discussion over recent combinatorial structures that are 3-uniform hypergraph expanders, viewing them in a more general perspective, shedding light on a previously unknown relation to the zig-zag product. We do so by introducing
By means of electron spin resonance investigations we revealed the crucial role of the interchain coupling in the spin dynamics of the spin-1/2 Heisenberg antiferromagnetic (AF) chain material copper-pyrazine-dinitrate, Cu(C$_4$H$_4$N$_2$)(NO$_3$)$_2
The phase diagram of a frustrated spin-$S$ zig-zag ladder is studied through different numerical and analytical methods. We show that for arbitrary $S$, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, bei