ﻻ يوجد ملخص باللغة العربية
We wish to renew the discussion over recent combinatorial structures that are 3-uniform hypergraph expanders, viewing them in a more general perspective, shedding light on a previously unknown relation to the zig-zag product. We do so by introducing a new structure called triplet structure, that maintains the same local environment around each vertex. The structure is expected to yield, in some cases, a bounded family of hypergraph expanders whose 2-dimensional random walk converges. We have applied the results obtained here to several known constructions, obtaining a better expansion rate than previously known. Namely, we did so in the case of Conlons construction and the $S=[1,1,0]$ construction by Chapman, Linal and Peled.
The zig-zag symmetry transition is a phase transition in 1D quantum wires, in which a Wigner lattice of electrons transitions to two staggered lattices. Previous studies model this transition as a Luttinger liquid coupled to a Majorana fermion. The m
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch
We prove the unimodality of the Ehrhart $delta$-polynomial of the chain polytope of the zig-zag poset, which was conjectured by Kirillov. First, based on a result due to Stanley, we show that this polynomial coincides with the $W$-polynomial for the
The Frank-Wolfe algorithm has regained much interest in its use in structurally constrained machine learning applications. However, one major limitation of the Frank-Wolfe algorithm is the slow local convergence property due to the zig-zagging behavi
The phase diagram of a frustrated spin-$S$ zig-zag ladder is studied through different numerical and analytical methods. We show that for arbitrary $S$, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, bei