ترغب بنشر مسار تعليمي؟ اضغط هنا

ESR of coupled spin-1/2 chains: unveiling zig-zag-type interchain correlations

141   0   0.0 ( 0 )
 نشر من قبل Gregory Teitel'baum B.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of electron spin resonance investigations we revealed the crucial role of the interchain coupling in the spin dynamics of the spin-1/2 Heisenberg antiferromagnetic (AF) chain material copper-pyrazine-dinitrate, Cu(C$_4$H$_4$N$_2$)(NO$_3$)$_2$. We found that the dominating interchain interaction is of a zig-zag type. This interaction gives rise to geometrical frustration effects and strongly influences the character of AF ordering. Combining our experimental findings with the results of a quasiclassical approach we argue that at low temperatures the system orders in an incommensurate spiral state.



قيم البحث

اقرأ أيضاً

198 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are repor ted. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
The zig-zag symmetry transition is a phase transition in 1D quantum wires, in which a Wigner lattice of electrons transitions to two staggered lattices. Previous studies model this transition as a Luttinger liquid coupled to a Majorana fermion. The m odel exhibits interesting RG flows, involving quenching of velocities in subsectors of the theory. We suggest an extension of the model which replaces the Majorana fermion by a more general CFT; this includes an experimentally realizable case with two Majorana fermions. We analyse the RG flow both in field theory and using AdS/CFT techniques in the large central charge limit of the CFT. The model has a rich phase structure with new qualitative features, already in the two Majorana fermion case. The AdS/CFT calculation involves considering back reaction in space-time to capture subleading effects.
213 - G. Sun , G. Jackeli , L. Santos 2011
Ultra-cold dipolar spinor fermions in zig-zag type optical lattices can mimic spin-orbital models relevant in solid-state systems, as transition-metal oxides with partially filled d-levels, with the interesting advantage of reviving the quantum natur e of orbital fluctuations. We discuss two different physical systems in which these models may be simulated, showing that the interplay between lattice geometry and spin-orbital quantum dynamics produces a wealth of novel quantum phases.
Field-dependent specific heat and neutron scattering measurements were used to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At zero field the system acquires magnetic long-range order below TN=0.93K with an ordered moment o f 0.44muB. An external field along the b-axis strengthens the zero-field magnetic order, while fields along the a- and c-axes lead to a collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T, respectively (for T=0.65K) and the formation of an energy gap in the excitation spectrum. We relate the field-induced gap to the presence of a staggered g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective staggered fields for magnetic fields applied along the a- and c-axes. Competition between anisotropy, inter-chain interactions and staggered fields leads to a succession of three phases as a function of field applied along the c-axis. For fields greater than mu0 Hc, we find a magnetic structure that reflects the symmetry of the staggered fields. The critical exponent, beta, of the temperature driven phase transitions are indistinguishable from those of the three-dimensional Heisenberg magnet, while measurements for transitions driven by quantum fluctuations produce larger values of beta.
We study the frustrated ferromagnetic spin-1 chains, where the ferromagnetic nearest-neighbor coupling competes with the antiferromagnetic next-nearest-neighbor coupling. We use the density matrix renormalization group to obtain the ground states. Th rough the analysis of spin-spin correlations we identify the double Haldane phase as well as the ferromagnetic phase. It is shown that the ferromagnetic coupling leads to incommensurate correlations in the double Haldane phase. Such short-range correlations transform continuously into the ferromagnetic instability at the transition to the ferromagnetic phase. We also compare the results with the spin-1/2 and classical spin systems, and discuss the string orders in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا