ﻻ يوجد ملخص باللغة العربية
The response to an electric field (DC and AC) of electronic systems in which the Fermi surface consists of a number of 3D Weyl points (such as some pyrochlore iridates) exhibits a peculiar combination of characteristics usually associated with insulating and conducting behaviour. Generically a neutral plasma in clean materials can be described by a tight binding model with a strong spin-orbit interaction. A system of that type has a vanishing DC conductivity; however the current response to the DC field is very slow: the current decays with time in a powerwise manner, different from an insulator. The AC conductivity, in addition to a finite real part which is linear in frequency, exhibits an imaginary part that increases logarithmically as function of the UV cutoff (atomic scale). This leads to substantial dielectric response like a large dielectric constant at low frequencies. This is in contrast to a 2D Weyl semimetal like graphene at neutrality point where the AC conductivity is purely pseudo-dissipative. The Coulomb interaction between electrons is long range and sufficiently strong to make a significant impact on transport. The interaction contribution to the AC conductivity is calculated within the tight binding model.
Type II Weyl semimetal, a three dimensional gapless topological phase, has drawn enormous interest recently. These topological semimetals enjoy overtilted dispersion and Weyl nodes that separate the particle and hole pocket. Using perturbation renorm
Weyl semimetals, featuring massless linearly dispersing chiral fermions in three dimensions, provide an excellent platform for studying the interplay of electronic interactions and topology, and exploring new correlated states of matter. Here, we exa
There is considerable current interest to explore electronic topology in strongly correlated metals, with heavy fermion systems providing a promising setting. Recently, a Weyl-Kondo semimetal phase has been concurrently discovered in theoretical and
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly intera
We present an analytical low-energy theory of piezoelectric electron-phonon interactions in undoped Weyl semimetals, taking into account also Coulomb interactions. We show that piezoelectric interactions generate a long-range attractive potential bet