ﻻ يوجد ملخص باللغة العربية
Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of fused silica while being free of Raman scattering. It also has a much higher optical damage threshold and a transparency window that extends from the UV to the infrared. We report the observation of nonlinear phenomena, such as self-phase modulation, in hollow-core photonic crystal fiber filled with supercritical Xe. In the subcritical regime, intermodal four-wave-mixing resulted in the generation of UV light in the HE12 mode. The normal dispersion of the fiber at high pressures means that spectral broadening can clearly obtained without influence from soliton effects or material damage.
The effective Kerr nonlinearity of hollow-core kagome-style photonic crystal fiber (PCF) filled with argon gas increases over 100 times when the pressure is increased from 1 to 150 bar, reaching 15 % of that of bulk silica glass, while the zero dispe
In this letter, an energetic and highly efficient dispersive wave (DW) generation at 200 nm has been numerically demonstrated by selectively exciting LP$_{02}$-like mode in a 10 bar Ar-filled hollow-core anti-resonant fiber pumping in the anomalous d
Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV requi
We demonstrate that the phase-matched dispersive wave (DW) emission within the resonance band of a 25-cm-long gas-filled hollow-core photonic crystal fiber (HC-PCF) can be strongly enhanced by the photoionization effect of the pump pulse. In the expe
We investigate non-diffracting hollow-core nonlinear optical waves propagating in a layered nanoscaled metal-dielectric structure characterized by a very small average linear dielectric permittivity (Nonlinear Epsilon-Near-Zero metamaterial). We anal