ﻻ يوجد ملخص باللغة العربية
Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagome type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment significantly increases the coherence times of the internal state transfer due to an increase in beam pointing stability.
Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of fused silica while being free of Raman scattering. It also has a much higher optical damage threshold and a transparency window that extends from the UV to the infrared. We
Single molecule detection provides detailed information about molecular structures and functions, but it generally requires the presence of a fluorescent marker which can interfere with the activity of the target molecule or complicate the sample pro
We report on a highly-efficient experimental scheme for the generation of deep-ultraviolet ultrashort light pulses using four-wave mixing in gas-filled kagome-style photonic crystal fiber. By pumping with ultrashort, few $mu$J, pulses centered at 400
In this letter, an energetic and highly efficient dispersive wave (DW) generation at 200 nm has been numerically demonstrated by selectively exciting LP$_{02}$-like mode in a 10 bar Ar-filled hollow-core anti-resonant fiber pumping in the anomalous d
We report on two types of Raman laser sources emitting in the near and middle ultraviolet spectral ranges by the use of a solarization-resilient gas-filled inhibited-coupling (IC) hollow-core photonic-crystal fiber (HCPCF) with record low transmissio