ترغب بنشر مسار تعليمي؟ اضغط هنا

What can we really learn about Magnetic Fields in Galaxy Clusters from Faraday Rotation observations?

133   0   0.0 ( 0 )
 نشر من قبل Doron Kushnir
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gilad Rave




اسأل ChatGPT حول البحث

We construct a simple and robust approach for deriving constraints on magnetic fields in galaxy clusters from rotation measure (RM) maps. Relaxing the commonly used assumptions of a correlation between the magnetic field strength and the plasma density and of a power-law (in wave number) magnetic field power spectrum, and using an efficient numerical analysis method, we test the consistency of a wide range of magnetic field models with RM maps of 11 extended sources in 5 clusters, for which the data were made available to us. We show that the data reveal no indication for a radial dependence of the average magnetic field strength, and in particular no indication for a correlation between the gas density and the field strength. The RM maps of a considerable fraction of the sources either require or are consistent with the presence of a spatially uniform magnetic field of a relatively small strength, 0.02-0.3 muG, which contributes significantly to the RM. The RM maps of all but one source do not require a power-law magnetic field power spectrum, and most are consistent with a power spectrum dominated by a single wave length. The uncertainties in the magnetic field strengths (and spatial correlation lengths) derived from RM maps exceed an order of magnitude (and often more). These uncertainties imply, in particular, that there is no indication in current RM data for a systematic difference between the magnetic field strengths in radio-halo clusters and in radio-quiet clusters. With the improvement expected in the near future of the quality and quantity of RM data, our analysis method will enable one to derive more accurate constraints on magnetic fields in galaxy clusters.



قيم البحث

اقرأ أيضاً

The LIGO/Virgo gravitational-wave (GW) interferometers have to-date detected ten merging black hole (BH) binaries, some with masses considerably larger than had been anticipated. Stellar-mass BH binaries at the high end of the observed mass range (wi th chirp mass ${cal M} gtrsim 25 M_{odot}$) should be detectable by a space-based GW observatory years before those binaries become visible to ground-based GW detectors. This white paper discusses some of the synergies that result when the same binaries are observed by instruments in space and on the ground. We consider intermediate-mass black hole binaries (with total mass $M sim 10^2 -10^4 M_{odot}$) as well as stellar-mass black hole binaries. We illustrate how combining space-based and ground-based data sets can break degeneracies and thereby improve our understanding of the binarys physical parameters. While early work focused on how space-based observatories can forecast precisely when some mergers will be observed on the ground, the reverse is also important: ground-based detections will allow us to dig deeper into archived, space-based data to confidently identify black hole inspirals whose signal-to-noise ratios were originally sub-threshold, increasing the number of binaries observed in both bands by a factor of $sim 4 - 7$.
240 - Markus H. Thoma 2008
Ultra-relativistic electromagnetic plasmas can be used for improving our understanding of the quark-gluon plasma. In the weakly coupled regime both plasmas can be described by transport theoretical and quantum field theoretical methods leading to sim ilar results for the plasma properties (dielectric tensor, dispersion relations, plasma frequency, Debye screening, transport coefficients, damping and particle production rates). In particular, future experiments with ultra-relativistic electron-positron plasmas in ultra-strong laser fields might open the possibility to test these predictions, e.g. the existence of a new fermionic plasma wave (plasmino). In the strongly coupled regime electromagnetic plasmas such as complex plasmas can be used as models or at least analogies for the quark-gluon plasma possibly produced in relativistic heavy-ion experiments. For example, pair correlation functions can be used to investigate the equation of state and cross section enhancement for parton scattering can be explained.
We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting, which shows consistent gains across all tasks.
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.
We demonstrate that a quasi-uniform cosmological seed field is a much less suitable seed for a galactic dynamo than has often been believed. The age of the Universe is insufficient for a conventional galactic dynamo to generate a contemporary galacti c magnetic field starting from such a seed, accepting conventional estimates for physical quantities. We discuss modifications to the scenario for the evolution of galactic magnetic fields implied by this result. We also consider briefly the implications of a dynamo number that is significantly larger than that given by conventional estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا