ترغب بنشر مسار تعليمي؟ اضغط هنا

What can we learn from electromagnetic plasmas about the quark-gluon plasma?

180   0   0.0 ( 0 )
 نشر من قبل Markus H. Thoma
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Markus H. Thoma




اسأل ChatGPT حول البحث

Ultra-relativistic electromagnetic plasmas can be used for improving our understanding of the quark-gluon plasma. In the weakly coupled regime both plasmas can be described by transport theoretical and quantum field theoretical methods leading to similar results for the plasma properties (dielectric tensor, dispersion relations, plasma frequency, Debye screening, transport coefficients, damping and particle production rates). In particular, future experiments with ultra-relativistic electron-positron plasmas in ultra-strong laser fields might open the possibility to test these predictions, e.g. the existence of a new fermionic plasma wave (plasmino). In the strongly coupled regime electromagnetic plasmas such as complex plasmas can be used as models or at least analogies for the quark-gluon plasma possibly produced in relativistic heavy-ion experiments. For example, pair correlation functions can be used to investigate the equation of state and cross section enhancement for parton scattering can be explained.

قيم البحث

اقرأ أيضاً

103 - Markus H. Thoma 2005
The quark-gluon plasma, possibly created in ultrarelativistic heavy-ion collisions, is a strongly interacting many-body parton system. By comparison with strongly coupled electromagnetic plasmas (classical and non-relativistic) it is concluded that t he quark-gluon plasma could be in the liquid phase. As an example for a strongly coupled plasma, complex plasmas, which show liquid and even solid phases, are discussed briefly. Furthermore, methods based on correlation functions for confirming and investigating the quark-gluon-plasma liquid are presented. Finally, consequences of the strong coupling, in particular a cross section enhancement in accordance with experimental observations at RHIC, are discussed.
Different from other multiple top-quark productions, triple top-quark production requires the presence of both flavor violating neutral interaction and flavor conserving neutral interaction. We describe the interaction of triple top-quarks and up-qua rk in terms of two dimension-6 operators; one can be induced by a new heavy vector resonance, the other by a scalar resonance. Combining same-sign top-quark pair production and four top-quark production, we explore the potential of the 13 TeV LHC on searching for the triple top-quark production.
122 - P. Kroll 2010
It is reported on an analysis of electroproduction of light mesons at small Bjorken-x within the handbag approach. The partonic subprocesses, meson electroproduction off quarks or gluons, are calculated within the modified perturbative approach in wh ich quark transverse momenta are retained. The soft hadronic matrix elements, generalized parton distributions, are constructed by means of double distributions. The constraints from parton distributions and sum rules are taken into account. Various moments of these generalized parton distributions are compared to recent results from lattice gauge theories.
We compare the nature of electromagnetic fields and of gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular the lines of force visualizations of electromagnetism are contr asted with the recently introduced tendex/vortex eigenline technique for visualizing gravitational fields. Specific solutions, visualizations, and comparisons are given for an oscillating point quadrupole source. Among the similarities illustrated are the quasistatic nature of the near fields, the transverse 1/r nature of the far fields, and the interesting intermediate field structures connecting these two limiting forms. Among the differences illustrated are the meaning of field line motion, and of the flow of energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا