ﻻ يوجد ملخص باللغة العربية
The LIGO/Virgo gravitational-wave (GW) interferometers have to-date detected ten merging black hole (BH) binaries, some with masses considerably larger than had been anticipated. Stellar-mass BH binaries at the high end of the observed mass range (with chirp mass ${cal M} gtrsim 25 M_{odot}$) should be detectable by a space-based GW observatory years before those binaries become visible to ground-based GW detectors. This white paper discusses some of the synergies that result when the same binaries are observed by instruments in space and on the ground. We consider intermediate-mass black hole binaries (with total mass $M sim 10^2 -10^4 M_{odot}$) as well as stellar-mass black hole binaries. We illustrate how combining space-based and ground-based data sets can break degeneracies and thereby improve our understanding of the binarys physical parameters. While early work focused on how space-based observatories can forecast precisely when some mergers will be observed on the ground, the reverse is also important: ground-based detections will allow us to dig deeper into archived, space-based data to confidently identify black hole inspirals whose signal-to-noise ratios were originally sub-threshold, increasing the number of binaries observed in both bands by a factor of $sim 4 - 7$.
Soon after the observation of the first black hole binary (BHB) by advanced LIGO (aLIGO), GW150914, it was realised that such a massive system would have been observable in the milli-Hz (mHz) band few years prior to coalescence. Operating in the freq
We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output
We construct a simple and robust approach for deriving constraints on magnetic fields in galaxy clusters from rotation measure (RM) maps. Relaxing the commonly used assumptions of a correlation between the magnetic field strength and the plasma densi
We discuss the features of instabilities in binary systems, in particular, for asymmetric nuclear matter. We show its relevance for the interpretation of results obtained in experiments and in ab initio simulations of the reaction between $^{124}Sn+^{124}Sn$ at 50AMeV.}