ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiperiodicity, modulations and flip-flops in variable star light curves II. Analysis of II Peg photometry during 1979-2010

59   0   0.0 ( 0 )
 نشر من قبل Maarit Mantere
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

According to earlier Doppler images of the magnetically active primary giant component of the RS CVn binary II Peg, the surface of the star was dominated by one single active longitude that was clearly drifting in the rotational frame of the binary system during 1994-2002; later imaging for 2004-2010, however, showed decreased and chaotic spot activity, with no signs of the drift pattern. Here we set out to investigate from a more extensive photometric dataset whether such a drift is a persistent phenomenon, in which case it could be due to either an azimuthal dynamo wave or an indication of the binary system orbital synchronization still being incomplete. We analyse the datasets using the Carrier Fit method (hereafter CF), especially suitable for analyzing time series in which a fast clocking frequency (such as the rotation of the star) is modulated with a slower process (such as the stellar activity cycle). We combine all collected photometric data into one single data set, and analyze it with the CF method. As a result, we confirm the earlier results of the spot activity having been dominated by one primary spotted region almost through the entire data set, and the existence of a persistent, nearly linear drift. Disruptions of the linear trend and complicated phase behavior are also seen, but the period analysis reveals a rather stable periodicity with P(spot)=6.71054d plus/minus 0.00005d. After the linear trend is removed from the data, we identify several abrupt phase jumps, three of which are analyzed in more detail with the CF method. These phase jumps closely resemble what is called flip-flop event, but the new spot configurations do not, in most cases, persist for longer than a few months.

قيم البحث

اقرأ أيضاً

69 - Nigul Olspert 2014
We study LQ Hya photometry for 1982-2014 with the carrier fit (CF) -method and compare our results to earlier photometric analysis and recent Doppler imaging maps. We first utilize different types of statistical methods to estimate various candidates for the carrier period for the CF method. Secondly, a global fit to the whole data set and local fits to shorter segments are computed with the period that is found to be the optimal one. The harmonic least-squares analysis of all the available data reveals a short period close to 1.6 days as a limiting value for a set of significant frequencies. We interpret this as the rotation period of the spots near the equatorial region. In addition, the distribution of the significant periods is found to be bimodal, hinting of a longer-term modulating period, which we set out to study with a two-harmonic CF model. Weak modulation signal is, indeed retrieved, with a period of roughly 6.9 years. The phase dispersion analysis gives a clear symmetric minimum for coherence times lower than and around 100 days. We interpret this as the mean rotation period of the spots (1.60514 days), and this value is chosen to be used as the carrier period for the CF analysis. With the CF method we seek for any systematic trends in the spot distribution in the global time frame, and locally look for abrupt phase changes earlier reported in rapidly rotating objects. During 2005-2008 the global CF reveals a coherent structure rotating with a period of 1.6037 days, while during most other times the spot distribution appears rather random in phase. The evolution of the spot distribution of the object is found to be very chaotic, with no clear signs of an azimuthal dynamo wave that would persist over longer time scales, although the short-lived coherent structures observed occasionally do not rotate with the same speed as the mean spot distribution.
FK Comae is a rapidly rotating magnetically active star, the light curve of which is modulated by cool spots on its surface. It was the first star where the flip-flop phenomenon was discovered. Since then, flip-flops in the spot activity have been re ported in many other stars. Therefore, it is of interest to perform a more thorough study of the evolution of the spot activity in FK Com. In this study, we analyse 15 years of photometric observations with two different time series analysis methods, with a special emphasis on detecting flip-flop type events from the data. We apply the continuous period search and carrier fit methods on long-term standard Johnson-Cousins V-observations from the years 1995--2010. The observations were carried out with two automated photometric telescopes, Phoenix-10 and Amadeus T7 located in Arizona. We identify complex phase behaviour in 6 of the 15 analysed data segments. We identify five flip-flop events and two cases of phase jumps, where the phase shift is Delta phi < 0.4. In addition we see two mergers of spot regions and two cases where the apparent phase shifts are caused by spot regions drifting with respect to each other. Furthermore we detect variations in the rotation period corresponding to a differential rotation coefficient of |k|>0.031. The flip-flop cannot be interpreted as a single phenomenon, where the main activity jumps from one active longitude to another. In some of our cases the phase shifts can be explained by differential rotation: Two spot regions move with different angular velocity and even pass each other. Comparison between the methods show that the carrier fit utility is better in retrieving slow evolution especially from a low amplitude light curve, while the continuous period search is more sensitive in case of rapid changes.
We present a compilation of UBV RIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986 to 2003: the Cerro Tololo Supernova Survey, the Calan/Tololo Supernova Program (C&T), the Supernova Optical a nd Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being thus shorter (longer) for larger (smaller) s values.
Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation-hydrodynamics simulations of type II SN l ight curves from red (RSG) and blue supergiant (BSG) star explosions to investigate the impact on SN observables of inhomogeneities in density or composition, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.
87 - L. Jetsu 2018
For seven decades, the widely held view has been that the formation, the migration and the decay of short-lived starspots explain the constantly changing light curves of chromospherically active stars. Our hypothesis is that these deceptive observed light curves are interference of two real constant period light curves of long-lived starspots. The slow motion of these long-lived starspots with respect to each other causes the observed light curve changes. This hypothesis contradicts the current views of starspots. Therefore, we subject it to eight reproducible tests. Our new period finding method detects the two real light curves of FK Com. Our hypothesis is a total success: all real light curve parameters are directly connected to the long-lived starspots which are also seen in the Doppler images of FK Com.These parameters are spatially and temporally correlated just like in the Sun, including weak solar-like surface differential rotation. As for other chromospherically active stars, all eight reproducible tests also support our hypothesis. It explains many spurious phenomena: the rapid light curve changes, the short starspot life-times, the rapid rotation period changes, the active longitudes, the starspot migration, the period cycles, the amplitude cycles and the minimum epoch cycles. It also explains why the light curves and the Doppler images give contradicting surface differential rotation estimates even for the same individual star, as well as the abrupt 180 degrees shifts of activity (the flip-flop events) and the long-term mean light curves. We argue that the current views of starspots need to be revised.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا