ترغب بنشر مسار تعليمي؟ اضغط هنا

UBVRIz Light Curves of 51 Type II Supernovae

135   0   0.0 ( 0 )
 نشر من قبل Lluis Galbany
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a compilation of UBV RIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986 to 2003: the Cerro Tololo Supernova Survey, the Calan/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being thus shorter (longer) for larger (smaller) s values.



قيم البحث

اقرأ أيضاً

Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation-hydrodynamics simulations of type II SN l ight curves from red (RSG) and blue supergiant (BSG) star explosions to investigate the impact on SN observables of inhomogeneities in density or composition, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.
We investigate the early-time light-curves of a large sample of 223 type II supernovae (SNe) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constr ain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At restframe g-band (4722A), we find a distribution of fast rise-times with median of (7.5+/-0.3) days. Comparing these durations with analytical shock models of Rabinak and Waxman (2013); Nakar and Sari (2010) and hydrodynamical models of Tominaga et al. (2009), which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or b) the delayed and prolonged shock breakout of the collapse of a RSG with an extended atmosphere or embedded within pre-SN circumstellar material.
Type II supernovae (SNe II) show strong hydrogen features in their spectra throughout their whole evolution while type IIb supernovae (SNe IIb) spectra evolve from dominant hydrogen lines at early times to increasingly strong helium features later on . However, it is currently unclear whether the progenitors of these supernova (SN) types form a continuum in pre-SN hydrogen mass or whether they are physically distinct. SN light-curve morphology directly relates to progenitor and explosion properties such as the amount of hydrogen in the envelope, the pre-SN radius, the explosion energy and the synthesized mass of radioactive material. In this work we study the morphology of the optical-wavelength light curves of hydrogen-rich SNe II and hydrogen-poor SNe IIb to test whether an observational continuum exists between the two. Using a sample of 95 SNe (73 SNe II and 22 SNe IIb), we define a range of key observational parameters and present a comparative analysis between both types. We find a lack of events that bridge the observed properties of SNe II and SNe IIb. Light curve parameters such as rise times and post-maximum decline rates and curvatures clearly separate both SN types and we therefore conclude that there is no continuum, with the two SN types forming two observationally distinct families. In the V-band a rise time of 17 days (SNe II lower, SNe IIb higher), and a magnitude difference between 30 and 40 days post explosion of 0.4 mag (SNe II lower, SNe IIb higher) serve as approximate thresholds to differentiate both types.
CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 a dditional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the supernova cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.
In this work, BV RI light curves of 55 Type II supernovae (SNe II) from the Lick Observatory Supernova Search program obtained with the Katzman Automatic Imaging Telescope and the 1 m Nickel telescope from 2006 to 2018 are presented. Additionally, mo re than 150 spectra gathered with the 3 m Shane telescope are published. We conduct an analyse of the peak absolute magnitudes, decline rates, and time durations of different phases of the light and colour curves. Typically, our light curves are sampled with a median cadence of 5.5 days for a total of 5093 photometric points. In average V-band plateau declines with a rate of 1.29 mag (100 days)-1, which is consistent with previously published samples. For each band, the plateau slope correlates with the plateau length and the absolute peak magnitude: SNe II with steeper decline have shorter plateau duration and are brighter. A time-evolution analysis of spectral lines in term of velocities and pseudoequivalent widths is also presented in this paper. Our spectroscopic sample ranges between 1 and 200 days post-explosion and has a median ejecta expansion velocity at 50 days post-explosion of 6500 km/s (Halpha line) and a standard dispersion of 2000 km/s. Nebular spectra are in good agreement with theoretical models using a progenitor star having a mass <16 Msol. All the data are available to the community and will help to understand SN II diversity better, and therefore to improve their utility as cosmological distance indicators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا