ﻻ يوجد ملخص باللغة العربية
We present new results regarding the companion mass-ratio distribution (CMRD) of stars, as a follow-up of our previous work. We used a maximum-likelihood-estimation method to re-derive the field CMRD power law avoiding dependence on the arbitrary binning. We also considered two new surveys of multiples in the field for solar-type stars and M dwarfs to test the universality of the CMRD. We found no significant differences in the CMRD for M dwarfs and solar-type stars compared with previous results over the common mass ratio and separation range. The new best-fit power law of the CMRD in the field, combining two previous sets of data, is $dN/dq propto q^{beta}$, with $beta=0.25pm0.29$.
We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single object mass function (Bochanski et al. 2010). The main goal of our analysis is
There is a population of stars with velocities in excess of 500 km s$^{-1}$ relative to the Galactic center. Many, perhaps most, of these hyper-velocity stars (HVSs) are B stars, similar to the disk and S stars in a nuclear cluster around a super-mas
We present optical spectroscopy for 18 halo white dwarfs identified using photometry from the Canada-France Imaging Survey and Pan-STARRS1 DR1 3$pi$ survey combined with astrometry from Gaia DR2. The sample contains 13 DA, 1 DZ, 2 DC, and two potenti
The circumstellar disk of the Herbig Fe star HD 142527 is host to several remarkable features including a warped inner disk, a 120 au-wide annular gap, a prominent dust trap and several spiral arms. A low-mass companion, HD 142527 B, was also found o
We report the detection of a radial velocity companion to the extremely low mass white dwarf LP400-22. The radial velocity of the white dwarf shows variations with a semi-amplitude of 119 km/s and a 0.98776 day period, which implies a companion mass