ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of low-mass companion HD 142527 B

74   0   0.0 ( 0 )
 نشر من قبل Valentin Christiaens
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumstellar disk of the Herbig Fe star HD 142527 is host to several remarkable features including a warped inner disk, a 120 au-wide annular gap, a prominent dust trap and several spiral arms. A low-mass companion, HD 142527 B, was also found orbiting the primary star at $sim$14 au. This study aims to better characterize this companion, which could help explain its impact on the peculiar geometry of the disk. We observed the source with VLT/SINFONI in $H$+$K$ band in pupil-tracking mode. Data were post-processed with several algorithms based on angular differential imaging (ADI). HD 142527 B is conspicuously re-detected in most spectral channels, which enables us to extract the first medium-resolution spectrum of a low-mass companion within 0.1 from its central star. Fitting our spectrum with both template and synthetic spectra suggests that the companion is a young M2.5$pm$1.0 star with an effective temperature of $3500pm100$ K, possibly surrounded with a hot (1700 K) circum-secondary environment. Pre-main sequence evolutionary tracks provide a mass estimate of $0.34pm0.06 M_{odot}$, independent of the presence of a hot environment. However, the estimated stellar radius and age do depend on that assumption; we find a radius of $1.37 pm 0.05 R_{odot}$ (resp. $1.96 pm 0.10 R_{odot}$) and an age of $1.8^{+1.2}_{-0.5}$ Myr (resp. $0.75 pm 0.25$ Myr) in the case of the presence (resp. absence) of a hot environment contributing in $H$+$K$. Our new values for the mass and radius yield a mass accretion rate of $sim$5 $times 10^{-9} M_{odot}$ yr$^{-1}$ (2-3% that of the primary). Our results illustrate thus the potential for SINFONI+ADI to characterize faint close-in companions. The new spectral type makes HD 142527 B a twin of the well known TW Hya T-Tauri star, and the revision of its mass to higher values further supports its role in shaping the disk.

قيم البحث

اقرأ أيضاً

With the uniquely high contrast within 0.1 (Delta mag(L) = 5-6.5 magnitudes) available using Sparse Aperture Masking (SAM) with NACO at VLT, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88+/-5 mas (12.8+/-1.5 AU at 145 pc) and flux ratios in H, K, and L of 0.016+/-0.007, 0.012+/-0.008, 0.0086+/-0.0011 respectively (3-sigma errors) relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion with an estimated mass of ~0.1-0.4 M_Sun. HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.
We present new near-infrared Gemini Planet Imager (GPI) spectroscopy of HD 206893 B, a substellar companion orbiting within the debris disk of its F5V star. The $J$, $H$, $K1$, and $K2$ spectra from GPI demonstrate the extraordinarily red colors of t he object, confirming it as the reddest substellar object observed to date. The significant flux increase throughout the infrared presents a challenging atmosphere to model with existing grids. Best-fit values vary from 1200 K to 1800 K for effective temperature and from 3.0 to 5.0 for log($g$), depending on which individual wavelength band is fit and which model suite is applied. The extreme redness of the companion can be partially reconciled by invoking a high-altitude layer of sub-micron dust particles, similar to dereddening approaches applied to the peculiar red field L-dwarf population. However, reconciling the HD 206893 B spectra with even those of the reddest low-gravity L-dwarf spectra still requires the contribution of additional atmospheric dust, potentially due to the debris disk environment in which the companion resides. Orbit fitting from four years of astrometric monitoring is consistent with a $sim$30-year period, orbital inclination of 147$^{circ}$, and semimajor axis of 10 au, well within the estimated disk inner radius of $sim$50 au. As one of very few substellar companions imaged interior to a circumstellar disk, the properties of this system offer important dynamical constraints on companion-disk interaction and provide a benchmark for substellar and planetary atmospheric study.
We constrain the angular momentum architecture of HD 106906, a 13 $pm$ 2 Myr old system in the ScoCen complex composed of a compact central binary, a widely separated planetary-mass tertiary HD 106906 b, and a debris disk nested between the binary an d tertiary orbital planes. We measure the orientations of three vectors: the companion spin axis, companion orbit normal, and disk normal. Using near-IR high-resolution spectra from Gemini/IGRINS, we obtain a projected rotational velocity of $vsin{i_p}$ = 9.5 $pm$ 0.2 km/s for HD 106906 b. This measurement together with a published photometric rotation period implies the companion is viewed nearly pole-on, with a line-of-sight spin axis inclination of $i_p$ = 14 $pm$ 4 degrees or 166 $pm$ 4 degrees. By contrast, the debris disk is known to be viewed nearly edge-on. The likely misalignment of all three vectors suggests HD 106906 b formed by gravitational instability in a turbulent environment, either in a disk or cloud setting.
We present ALMA observations of the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{^{13}CO}~J = 1 - 0$ and $mathrm{C^{18}O}~J = 1 - 0$ line emissions of the protoplanetary disk associated with HD~142527. The $98.5~mathrm{GHz}$ continuum shows a st rong azimuthal-asymmetric distribution similar to that of the previously reported $336~mathrm{GHz}$ continuum, with a peak emission in dust concentrated region in the north. The disk is optically thin in both the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{C^{18}O}~J = 1 - 0$ emissions. We derive the distributions of gas and dust surface densities, $Sigma_mathrm{g}$ and $Sigma_mathrm{d}$, and the dust spectral opacity index, $beta$, in the disk from ALMA Band 3 and Band 7 data. In the analyses, we assume the local thermodynamic equilibrium and the disk temperature to be equal to the peak brightness temperature of $mathrm{^{13}CO}~J = 3 - 2$ with a continuum emission. The gas-to-dust ratio, $mathrm{G/D}$, varies azimuthally with a relation $mathrm{G/D} propto Sigma_mathrm{d}^{-0.53}$, and $beta$ is derived to be $approx 1$ and $approx 1.7$ in the northern and southern regions of the disk, respectively. These results are consistent with the accumulation of larger dust grains in a higher pressure region. In addition, our results show that the peak $Sigma_mathrm{d}$ is located ahead of the peak $Sigma_mathrm{g}$. If the latter corresponds to a vortex of high gas pressure, the results indicate that the dust is trapped ahead of the vortex, as predicted by some theoretical studies.
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7. 1 (650 AU). It is confirmed to be comoving with its $13pm2$ Myr-old F5 host using Hubble Space Telescope/Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict the companions luminosity corresponds to a mass of $11pm2 M_{Jup}$, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette $J/H/K$ spectrum as L$2.5pm1$; the triangular $H$-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric ($e>0.65$) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations $>35$ AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at $<1%$, is unusually small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا