ﻻ يوجد ملخص باللغة العربية
We present optical spectroscopy for 18 halo white dwarfs identified using photometry from the Canada-France Imaging Survey and Pan-STARRS1 DR1 3$pi$ survey combined with astrometry from Gaia DR2. The sample contains 13 DA, 1 DZ, 2 DC, and two potentially exotic types of white dwarf. We fit both the spectrum and the spectral energy distribution in order to obtain the temperature and surface gravity, which we then convert into a mass, and then an age, using stellar isochrones and the initial-to-final mass relation. We find a large spread in ages that is not consistent with expected formation scenarios for the Galactic halo. We find a mean age of 9.03$^{+2.13}_{-2.03}$ Gyr and a dispersion of 4.21$^{+2.33}_{-1.58}$ Gyr for the inner halo using a maximum likelihood method. This result suggests an extended star formation history within the local halo population.
We present a new fully data-driven algorithm that uses photometric data from the Canada-France-Imaging-Survey (CFIS; $u$), Pan-STARRS 1 (PS1; $griz$), and Gaia ($G$) to discriminate between dwarf and giant stars and to estimate their distances and me
As the remnants of stars with initial masses $lesssim$ 8 M$_{odot}$, white dwarfs contain valuable information on the formation histories of stellar populations. In this paper, we use deep, high-quality, u-band photometry from the Canada France Imagi
The Canada-France Imaging Survey (CFIS) will map the northern high Galactic latitude sky in the $u$-band (CFIS-u, 10,000$, {rm deg^2}$) and in the $r$-band (CFIS-r, 5,000$, {rm deg^2}$), enabling a host of stand-alone science investigations, and prov
White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a populatio
We use 156 044 white dwarf candidates with $geq5sigma$ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; $(sigma_U,sigma_V,sigma_W) = (30.8, 23.9, 20.0)$ km s$^{-1}$. We identify 142 obje