ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder assisted transmission due to charge puddles in monolayer graphene: Transmission enhancement and local currents

348   0   0.0 ( 0 )
 نشر من قبل Leandro Lima
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the contribution of charge puddles to the non-vanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evanescent modes allowing to single out the effect of charge fluctuations in the transport properties. We use the recursive Greens functions technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relation between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.



قيم البحث

اقرأ أيضاً

Angle disorder is an intrinsic feature of twisted bilayer graphene and other moire materials. Here, we discuss electron transport in twisted bilayer graphene in the presence of angle disorder. We compute the local density of states and the Landauer-B uttiker transmission through an angle disorder barrier of width comparable to the moire period, using a decimation technique based on a real space description. We find that barriers which separate regions where the width of the bands differ by 50% or more lead to a minor suppression of the transmission, and that the transmission is close to one for normal incidence, which is reminiscent of Klein tunneling. These results suggest that transport in twisted bilayer graphene is weakly affected by twist angle disorder.
Hydrodynamic behavior in electronic systems is commonly accepted to be associated with extremely clean samples such that electron-electron collisions dominate and total momentum is conserved. Contrary to this, we show that in monolayer graphene the p resence of disorder is essential to enable an unconventional hydrodynamic regime which exists near the charge neutrality point and is characterized by a large enhancement of the Wiedemann-Franz ratio. Although the enhancement becomes more pronounced with decreasing disorder, the very possibility of observing the effect depends crucially on the presence of disorder. We calculate the maximum extrinsic carrier density $n_c$ below which the effect becomes manifest, and show that $n_c$ vanishes in the limit of zero disorder. For $n>n_c$ we predict that the Wiedemann-Franz ratio actually decreases with decreasing disorder. We complete our analysis by presenting a transparent picture of the physical processes that are responsible for the crossover from conventional to disorder-enabled hydrodynamics. Recent experiments on monolayer graphene are discussed and shown to be consistent with this picture.
We present a joint theory-experiment study on the transmission/absorption saturation after ultrafast pulse excitation in graphene. We reveal an unconventional double-bended saturation behavior: Both bendings separately follow the standard saturation model exhibiting two saturation fluences, however, the corresponding fluences differ by three orders of magnitude and have different physical origin. Our results reveal that this new and unexpected behavior can be ascribed to an interplay between fluence- and time-dependent many-particle scattering processes and phase-space filling effects.
The charge carrier density in graphene on a dielectric substrate such as SiO$_2$ displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge ne utrality, a markedly distinct property from conventional two-dimensional electron gases. By performing scanning tunneling microscopy/spectroscopy on a mesoscopic graphene device, we directly observe the puddles growth, both in spatial extent and in amplitude, as the Dirac point is approached. Self-consistent screening theory provides a unified description of both the macroscopic transport properties and the microscopically observed charge disorder.
Graphene on a dielectric substrate exhibits spatial doping inhomogeneities, forming electron-hole puddles. Understanding and controlling the latter is of crucial importance for unraveling many of graphenes fundamental properties at the Dirac point. H ere we show the coexistence and correlation of charge puddles and topographic ripples in graphene decoupled from the metallic substrate it was grown on. The analysis of interferences of Dirac fermion-like electrons yields a linear dispersion relation, indicating that graphene on a metal can recover its intrinsic electronic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا