ﻻ يوجد ملخص باللغة العربية
We investigate the contribution of charge puddles to the non-vanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evanescent modes allowing to single out the effect of charge fluctuations in the transport properties. We use the recursive Greens functions technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relation between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.
Angle disorder is an intrinsic feature of twisted bilayer graphene and other moire materials. Here, we discuss electron transport in twisted bilayer graphene in the presence of angle disorder. We compute the local density of states and the Landauer-B
Hydrodynamic behavior in electronic systems is commonly accepted to be associated with extremely clean samples such that electron-electron collisions dominate and total momentum is conserved. Contrary to this, we show that in monolayer graphene the p
We present a joint theory-experiment study on the transmission/absorption saturation after ultrafast pulse excitation in graphene. We reveal an unconventional double-bended saturation behavior: Both bendings separately follow the standard saturation
The charge carrier density in graphene on a dielectric substrate such as SiO$_2$ displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge ne
Graphene on a dielectric substrate exhibits spatial doping inhomogeneities, forming electron-hole puddles. Understanding and controlling the latter is of crucial importance for unraveling many of graphenes fundamental properties at the Dirac point. H