ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring light-ion production and fission cross sections versus elastic np-scattering at the upcoming NFS facility

210   0   0.0 ( 0 )
 نشر من قبل Kaj Jansson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Jansson




اسأل ChatGPT حول البحث

The Medley setup is planned to be moved to and used at the new neutron facility NFS where measurements of light-ion production and fission cross-sections are planned at 1-40 MeV. Medley has eight detector telescopes providing Delta E-Delta E-E data, each consisting of two silicon detectors and a CsI(Tl) detector at the back. The telescope setup is rotatable and can be made to cover any angle. Medley has previously been used in many measurements at The Svedberg Laboratory (TSL) in Uppsala mainly with a quasi-mono-energetic neutron beam at 96 and 175 MeV. To be able to do measurements at NFS, which will have a white neutron beam, Medley needs to detect the reaction products with a high temporal resolution providing the ToF of the primary neutron. In this paper we discuss the design of the Medley upgrade along with simulations of the setup. We explore the use of Parallel Plate Avalanche Counters (PPACs) which work very well for detecting fission fragments but require more consideration for detecting deeply penetrating particles.



قيم البحث

اقرأ أيضاً

251 - M. Vilen , L. Canete , B. Cheal 2019
An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion be ams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March 2013.
This article presents an upgraded in-trap decay spectroscopy apparatus which has been developed and constructed for use with TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). This device consists of an open-access electron-beam ion-trap (EBIT) , which is surrounded radially by seven low-energy planar Si(Li) detectors. The environment of the EBIT allows for the detection of low-energy photons by providing backing-free storage of the radioactive ions, while guiding charged decay particles away from the trap centre via the strong (up to 6 T) magnetic field. In addition to excellent ion confinement and storage, the EBIT also provides a venue for performing decay spectroscopy on highly-charged radioactive ions. Recent technical advancements have been able to provide a significant increase in sensitivity for low-energy photon detection, towards the goal of measuring weak electron-capture branching ratios of the intermediate nuclei in the two-neutrino double beta ($2 ubetabeta$) decay process. The design, development, and commissioning of this apparatus are presented together with the main physics objectives. The future of the device and experimental technique are discussed.
Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new high-efficiency $gamma$-ray spectrometer designed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMFs Isotope Separat or and Accelerator (ISAC-I) facility. GRIFFIN is composed of sixteen Compton-suppressed large-volume clover-type high-purity germanium (HPGe) $gamma$-ray detectors combined with a suite of ancillary detection systems and coupled to a custom digital data acquisition system. The infrastructure and detectors of the spectrometer as well as the performance characteristics and the analysis techniques applied to the experimental data are described.
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the dete ction of Coherent Elastic Neutrino-Nucleus Scattering (CE$ u$NS), a process recently measured for the first time at ORNLs Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$ u$NS measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا