ترغب بنشر مسار تعليمي؟ اضغط هنا

The TITAN in-trap decay spectroscopy facility at TRIUMF

108   0   0.0 ( 0 )
 نشر من قبل Kyle Leach G
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article presents an upgraded in-trap decay spectroscopy apparatus which has been developed and constructed for use with TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). This device consists of an open-access electron-beam ion-trap (EBIT), which is surrounded radially by seven low-energy planar Si(Li) detectors. The environment of the EBIT allows for the detection of low-energy photons by providing backing-free storage of the radioactive ions, while guiding charged decay particles away from the trap centre via the strong (up to 6 T) magnetic field. In addition to excellent ion confinement and storage, the EBIT also provides a venue for performing decay spectroscopy on highly-charged radioactive ions. Recent technical advancements have been able to provide a significant increase in sensitivity for low-energy photon detection, towards the goal of measuring weak electron-capture branching ratios of the intermediate nuclei in the two-neutrino double beta ($2 ubetabeta$) decay process. The design, development, and commissioning of this apparatus are presented together with the main physics objectives. The future of the device and experimental technique are discussed.



قيم البحث

اقرأ أيضاً

Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new high-efficiency $gamma$-ray spectrometer designed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMFs Isotope Separat or and Accelerator (ISAC-I) facility. GRIFFIN is composed of sixteen Compton-suppressed large-volume clover-type high-purity germanium (HPGe) $gamma$-ray detectors combined with a suite of ancillary detection systems and coupled to a custom digital data acquisition system. The infrastructure and detectors of the spectrometer as well as the performance characteristics and the analysis techniques applied to the experimental data are described.
We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9$,$K. During an extensive test campaign in November 2017, w e extracted up to 325000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3$,$cm$^{-3}$. The storage lifetime of ultracold neutrons in the source was initially 37$,$s and dropped to 24$,$s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500$,$s$^{-1}$. Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to $T^7$.
We report on our efforts to optimize the geometry of neutron moderators and converters for the TRIUMF UltraCold Advanced Neutron (TUCAN) source using MCNP simulations. It will use an existing spallation neutron source driven by a 19.3 kW proton beam delivered by TRIUMFs 520 MeV cyclotron. Spallation neutrons will be moderated in heavy water at room temperature and in liquid deuterium at 20 K, and then superthermally converted to ultracold neutrons in superfluid, isotopically purified $^4$He. The helium will be cooled by a $^3$He fridge through a $^3$He-$^4$He heat exchanger. The optimization took into account a range of engineering and safety requirements and guided the detailed design of the source. The predicted ultracold-neutron density delivered to a typical experiment is maximized for a production volume of 27 L, achieving a production rate of $1.4 cdot 10^7$ s$^{-1}$ to $1.6 cdot 10^7$ s$^{-1}$ with a heat load of 8.1 W. At that heat load, the fridge can cool the superfluid helium to 1.1 K, resulting in a storage lifetime for ultracold neutrons in the source of about 30 s. The most critical performance parameters are the choice of cold moderator and the volume, thickness, and material of the vessel containing the superfluid helium. The source is scheduled to be installed in 2021 and will enable the TUCAN collaboration to measure the electric dipole moment of the neutron with a sensitivity of $10^{-27}$ e cm.
Several modes of electroweak radioactive decay require an interaction between the nucleus and bound electrons within the constituent atom. Thus, the probabilities of the respective decays are not only influenced by the structure of the initial and fi nal states in the nucleus, but can also depend strongly on the atomic charge. Conditions suitable for the partial or complete ionization of these rare isotopes occur naturally in hot, dense astrophysical environments, but can also be artificially generated in the laboratory to selectively block certain radioactive decay modes. Direct experimental studies on such scenarios are extremely difficult due to the laboratory conditions required to generate and store radioactive ions at high charge states. A new electron-beam ion trap (EBIT) decay setup with the TITAN experiment at TRIUMF has successfully demonstrated such techniques for performing spectroscopy on the radioactive decay of highly charged ions.
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March 2013.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا