ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

181   0   0.0 ( 0 )
 نشر من قبل Pilar Coloma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$ u$NS), a process recently measured for the first time at ORNLs Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$ u$NS measurements.



قيم البحث

اقرأ أيضاً

84 - D. Akimov , J.B. Albert , P. An 2018
The primary goal of the COHERENT collaboration is to measure and study coherent elastic neutrino-nucleus scattering (CEvNS) using the high-power, few-tens-of-MeV, pulsed source of neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The COHERENT collaboration reported the first detection of CEvNS [Akimov:2017ade] using a CsI[Na] detector. At present the collaboration is deploying four detector technologies: a CsI[Na] scintillating crystal, p-type point-contact germanium detectors, single-phase liquid argon, and NaI[Tl] crystals. All detectors are located in the neutron-quiet basement of the SNS target building at distances 20-30 m from the SNS neutrino source. The simultaneous measurement in all four COHERENT detector subsystems will test the $N^2$ dependence of the cross section and search for new physics. In addition, COHERENT is measuring neutrino-induced neutrons from charged- and neutral-current neutrino interactions on nuclei in shielding materials, which represent a non-negligible background for CEvNS as well as being of intrinsic interest. The Collaboration is planning as well to look for charged-current interactions of relevance to supernova and weak-interaction physics. This document describes concisely the COHERENT physics motivations, sensitivity, and next plans for measurements at the SNS to be accomplished on a few-year timescale.
623 - D. Akimov , J.B. Albert , P. An 2017
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.
The COHERENT collaborations primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Labo ratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.
We present a new experimental method for measuring the process of Coherent Elastic Neutrino Nucleus Scattering (CENNS). This method uses a detector situated transverse to a high energy neutrino beam production target. This detector would be sensitive to the low energy neutrinos arising from pion decays-at-rest in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.
121 - N. Van Dessel , V. Pandey , H. Ray 2020
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known. We present microscopic nuclear structure physics calculations of charge and weak nuclear form factors and CE$ u$NS cross sections on $^{12}$C, $^{16}$O, $^{40}$Ar, $^{56}$Fe and $^{208}$Pb nuclei. We obtain the proton and neutron densities, and charge and weak form factors by solving Hartree-Fock equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing $^{208}$Pb and $^{40}$Ar charge form factor predictions with elastic electron scattering data. In view of the worldwide interest in liquid-argon based neutrino and dark matter experiments, we pay special attention to the $^{40}$Ar nucleus and make predictions for the $^{40}$Ar weak form factor and the CE$ u$NS cross sections. Furthermore, we attempt to gauge the level of theoretical uncertainty pertaining to the description of the $^{40}$Ar form factor and CE$ u$NS cross sections by comparing relative differences between recent microscopic nuclear theory and widely-used phenomenological form factor predictions. Future precision measurements of CE$ u$NS will potentially help in constraining these nuclear structure details that will in turn improve prospects of extracting new physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا