ترغب بنشر مسار تعليمي؟ اضغط هنا

Calcium H & K Induced by Galaxy Halos

46   0   0.0 ( 0 )
 نشر من قبل Guangtun Zhu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the mean density profile of Ca II gas around galaxies out to ~ 200 kpc, traced by Fraunhofers H & K absorption lines. The measurement is based on cross-correlating the positions of about one million foreground galaxies at z ~ 0.1 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. This technique allows us to trace the total amount of Ca II absorption induced by the circumgalactic medium, including absorbers too weak to be detected in individual spectra. We can statistically measure Ca II rest equivalent widths down to several mA, corresponding to column densities of about 5x10^10 cm^{-2}. We find that the Ca II column density distribution follows N ~ rp^{-1.4} and the mean Ca II mass in the halo within 200 kpc is ~ 5x10^3 Msolar, averaged over the foreground galaxy sample with median mass ~ 10^10.3 Msolar. This is about an order-of-magnitude larger than the Ca II mass in the interstellar medium of the Milky Way, suggesting more than 90% of Ca II in the Universe is in the circum- and inter-galactic environments. Our measurements indicate that the amount of Ca II in halos is larger for galaxies with higher stellar mass and higher star formation rate. For edge-on galaxies we find Ca II to be more concentrated along the minor axis, i.e. in the polar direction. This suggests that bipolar outflows induced by star formation must have played a significant role in producing Ca II in galaxy halos.

قيم البحث

اقرأ أيضاً

We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9 sigma. Using X-ray selected groups in the COSMOS 1.64 deg^2 field, and high-redshift Lyman break galaxies as sources, w e measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.
Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Verifying observationally this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify the halo shape s and to render them more axisymmetric. We use a suite of N-body simulations to investigate quantitatively the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. As expected, the halo responds to the presence of the disk by becoming more spherical. The net effect depends only weakly on the orientation of the disk relative to the halo principal axes or the timescale of disk assembly, but strongly on the overall gravitational importance of the disk. Our results show that exponential disks whose contribution peaks at less than ~50% of their circular velocity are unable to modify noticeably the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.
81 - M. Valluri 2009
Using spectral methods, we analyse the orbital structure of prolate/triaxial dark matter (DM) halos in N-body simulations to understand the processes that drive the evolution of shapes of DM halos and elliptical galaxies in which central masses are g rown. A longstanding issue is whether the change in the shapes of DM halos is the result of chaotic scattering of box orbits, or whether they change shape adiabatically in response to the evolving galactic potential. We use orbital frequencies to classify orbits, to quantify orbital shapes, and to identify resonant orbits and chaotic orbits. The frequency-based method overcomes the limitations of Lyapunov exponents which are sensitive to numerical discreteness effects. Regardless of the distribution of the baryonic component, the shape of a DM halo changes primarily due to changes in the shapes of individual orbits within a given family. Orbits with small pericentric radii are more likely to change both their orbital type and shape than orbits with large pericentric radii. Whether the evolution is regular (and reversible) or chaotic (and irreversible), depends primarily on the radial distribution of the baryonic component. The growth of an extended baryonic component of any shape results in a regular rather than chaotic change in orbital populations. In contrast the growth of a massive and compact central component results in chaotic scattering of a significant fraction of both box and long-axis tube orbits. The growth of a disk causes a significant fraction of halo particles to become trapped by major global orbital resonances. Despite the fact that shape of a DM halo is always quite oblate following the growth of a central baryonic component, a significant fraction of its orbit population has characteristics of its triaxial or prolate progenitor (ABRIDGED).
102 - Kyle R. Stewart 2013
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms cold flow disks. We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا