ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sphericalization of Dark Matter Halos by Galaxy Disks

64   0   0.0 ( 0 )
 نشر من قبل Stelios Kazantzidis
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Verifying observationally this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify the halo shapes and to render them more axisymmetric. We use a suite of N-body simulations to investigate quantitatively the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. As expected, the halo responds to the presence of the disk by becoming more spherical. The net effect depends only weakly on the orientation of the disk relative to the halo principal axes or the timescale of disk assembly, but strongly on the overall gravitational importance of the disk. Our results show that exponential disks whose contribution peaks at less than ~50% of their circular velocity are unable to modify noticeably the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.

قيم البحث

اقرأ أيضاً

We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9 sigma. Using X-ray selected groups in the COSMOS 1.64 deg^2 field, and high-redshift Lyman break galaxies as sources, w e measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.
Dissipative dark matter self-interactions can affect halo evolution and change its structure. We perform a series of controlled N-body simulations to study impacts of the dissipative interactions on halo properties. The interplay between gravitationa l contraction and collisional dissipation can significantly speed up the onset of gravothermal collapse, resulting in a steep inner density profile. For reasonable choices of model parameters controlling the dissipation, the collapse timescale can be a factor of 10-100 shorter than that predicted in purely elastic self-interacting dark matter. The effect is maximized when energy loss per collision is comparable to characteristic kinetic energy of dark matter particles in the halo. Our simulations provide guidance for testing the dissipative nature of dark matter with astrophysical observations.
170 - M. Jauzac 2017
We assess how much unused strong lensing information is available in the deep emph{Hubble Space Telescope} imaging and VLT/MUSE spectroscopy of the emph{Frontier Field} clusters. As a pilot study, we analyse galaxy cluster MACS,J0416.1-2403 ($z$$=$$0 .397$, $M(R<200,{rm kpc})$$=$$1.6$$times$$10^{14}msun$), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the clusters large-scale mass distribution. We find tentative evidence that some galaxies dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and baryonic halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five emph{Frontier Field} clusters.
A self-interacting dark matter halo can experience gravothermal collapse, resulting in a central core with an ultrahigh density. It can further contract and collapse into a black hole, a mechanism proposed to explain the origin of supermassive black holes. We study dynamical instability of the core in general relativity. We use a truncated Maxwell-Boltzmann distribution to model the dark matter distribution and solve the Tolman-Oppenheimer-Volkoff equation. For given model parameters, we obtain a series of equilibrium configurations and examine their dynamical instability based on considerations of total energy, binding energy, fractional binding energy, and adiabatic index. The numerical results from our semi-analytical method are in good agreement with those from fully relativistic N-body simulations. We further show for the instability to occur in the classical regime, the boundary temperature of the core should be at least $10%$ of the mass of dark matter particles; for a $10^9~{rm M_odot}$ seed black hole, the particle mass needs to be larger than a few keV. These results can be used to constrain different collapse models, in particular, those with dissipative dark matter interactions.
We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock ty pe for the spherically symmetrical wave function of the DMH component. This equation includes two independent dimensionless parameters: (i) b{eta}- the ratio of baryon and axion total mases and (ii) {xi}- the ratio of characteristic baryon and axion spatial parameters. We extended our dissipation algorithm for studying numerically the ground state of the axion halo in the gravitational field produced by the baryonic component. We calculated the characteristic size, Xc, of DMH as a function of b{eta} and {xi} and obtained an analytical approximation for Xc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا