ترغب بنشر مسار تعليمي؟ اضغط هنا

Chirality-induced linear response properties in non-coplanar Mn$_3$Ge

116   0   0.0 ( 0 )
 نشر من قبل Sergiy Mankovsky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Taking the non-collinear antiferromagnetic hexagonal Heusler compound Mn$_3$Ge as a reference system, the contributions to linear response phenomena arising solely from the chiral coplanar and non-coplanar spin configurations are investigated. Orbital moments, X-ray absorption, anomalous and spin Hall effects, as well as corresponding spin-orbit torques and Edelstein polarizations are studied depending on a continuous variation of the polar angle relative to the Kagome planes of corner-sharing triangles between the non-collinear antiferromagnetic and the ferromagnetic limits. By scaling the speed of light from the relativistic Dirac case to the non-relativistic limit the chirality-induced or topological contributions can be identified by suppressing the spin-orbit coupling.

قيم البحث

اقرأ أيضاً

The recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn$_3$$X$, ($X$ = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovati on. These effects are considered fingerprints of Weyl nodes residing near the Fermi energy, promoting Mn$_3$$X$, ($X$ = Sn, Ge) as a fascinating platform to explore the elusive magnetic Weyl fermions. In this review, we provide recent updates on the insights drawn from experimental and theoretical studies of Mn$_3$$X$, ($X$ = Sn, Ge) by combining previous reports with our new, comprehensive set of transport measurements of high-quality Mn$_3$Sn and Mn$_3$Ge single crystals. In particular, we report magnetotransport signatures specific to chiral anomalies in Mn$_3$Ge and planar Hall effect in Mn$_3$Sn, which have not yet been found in earlier studies. The results summarized here indicate the essential role of magnetic Weyl fermions in producing the large transverse responses in the absence of magnetization.
The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn$_{1-x}$Fe$_x$Ge alloys have been investigated by first-principles calculations usi ng the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The $D_{rm xx}$ component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at $x approx 0.85$ in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at $x approx 0.8$. A corresponding behavior with a sign change at $x approx 0.5$ is predicted also for the Fermi sea contribution to the SOT, as this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the AHE and the sign change of the SHE conductivities.
Crystalline Mn5Ge3 nanomagnets are formed inside a Mn-diluted Ge matrix using Mn ion implantation. A temperature-dependent memory effect and slow magnetic relaxation are observed below the superparamagnetic blocking temperature of Mn5Ge3. Our finding s corroborate that the observed spin-glass-like features are caused by the size distribution of Mn5Ge3 nanomagnets, rather than by the inter-particle interaction through the Mn-diluted Ge matrix.
The emergence of magnetic reconstructions at the interfaces of oxide heterostructures are often explained via subtle modifications in the electronic densities, exchange couplings, or strain. Here an additional possible route for induced magnetism is studied in the context of the (LaNiO$_3$)$_n$/(LaMnO$_3$)$_n$ superlattices using a hybrid tight-binding model. In the LaNiO$_3$ region, the induced magnetizations decouple from the intensity of charge leakage from Mn to Ni, but originate from the spin-filtered quantum confinement present in these nanostructures. In general, the induced magnetization is the largest for the (111)-stacking and the weakest for the (001)-stacking superlattices, results compatible with the exchange bias effects reported by Gibert et al. Nat. Mater. 11, 195 (2012).
Macroscopic magnetic properties and microscopic magnetic structure of Rb$_2$Mn$_3$(MoO$_4$)$_3$(OH)$_2$ (space group $Pnma$) are investigated by magnetization, heat capacity and single-crystal neutron diffraction measurements. The compounds crystal s tructure contains bond-alternating [Mn$_3$O$_{11}$]$^{infty}$ chains along the $b$-axis, formed by isosceles triangles of Mn ions occupying two crystallographically nonequivalent sites (Mn1 site on the base and Mn2 site on the vertex). These chains are only weakly linked to each other by nonmagnetic oxyanions. Both SQUID magnetometry and neutron diffraction experiments show two successive magnetic transitions as a function of temperature. On cooling, it transitions from a paramagnetic phase into an incommensurate phase below 4.5~K with a magnetic wavevector near ${bf k}_{1} = (0,~0.46,~0)$. An additional commensurate antiferromagnetically ordered component arises with ${bf k}_{2} = (0,~0,~0)$, forming a complex magnetic structure below 3.5~K with two different propagation vectors of different stars. On further cooling, the incommensurate wavevector undergoes a lock-in transition below 2.3~K. The experimental results suggest that the magnetic superspace group is $Pnma.1(0b0)s0ss$ for the single-${bf k}$ incommensurate phase and is $Pnma(0b0)00s$ for the 2-${bf k}$ magnetic phase. We propose a simplified magnetic structure model taking into account the major ordered contributions, where the commensurate ${bf k}_{2}$ defines the ordering of the $c$-axis component of Mn1 magnetic moment, while the incommensurate ${bf k}_{1}$ describes the ordering of the $ab$-plane components of both Mn1 and Mn2 moments into elliptical cycloids
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا