ترغب بنشر مسار تعليمي؟ اضغط هنا

VERITAS Results from Deep Exposure on the Distant FSRQ 4C +55.17

38   0   0.0 ( 0 )
 نشر من قبل Amy Furniss
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a deep VERITAS exposure of the distant (z=0.89) flat-spectrum radio quasar (FSRQ) 4C +55.17. The high flux, hard index and steady emission found by Fermi LAT observations make this blazar a promising very-high-energy (VHE; E>100 GeV) candidate, offering a possibility to clarify the location of FSRQ VHE emission. Non-detection supports the hypothesis that any VHE gamma-rays are produced within and absorbed by the broad-line region while VHE detection would support an emission region outside the broad line region and far from the base of the jet. This FSRQ additionally provides the possible means, by photon-photon pair production, to constrain the currently available extragalactic background light (EBL) models out to the groundbreaking redshift of z=0.89. The log-parabolic model that is fitted to the LAT photons allows an extrapolation of the fit up to VHE while accounting for the gamma-ray absorption by the EBL. The VERITAS upper limit derived from the deep exposure is compared to this extrapolated VHE flux.

قيم البحث

اقرأ أيضاً

The bright gamma-ray quasar 4C +55.17 is a distant source ($z = 0.896$) with a hard spectrum at GeV energies as observed by the Large Area Telescope (LAT) on board the {{it Fermi}} satellite. This source is identified as a good source candidate for v ery-high-energy (VHE; $> 30$ GeV) gamma rays. In general VHE gamma rays from distant sources provide an unique opportunity to study the extragalactic background light (EBL) and underlying astrophysics. The flux intensity of this source in the VHE range is investigated. Then, constraints on the EBL are derived from the attenuation of gamma-ray photons coming from the distant blazar. We searched for a gamma-ray signal from this object using the 35-hour observations taken by the MAGIC telescopes between November 2010 and January 2011. No significant VHE gamma-ray signal was detected. We computed the upper limits of the integrated gamma-ray flux at $95%$ confidence level of $9.4 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ and $2.5 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ above $100$ GeV and $200$ GeV, respectively. The differential upper limits in four energy bins in the range from $80$ GeV to $500$ GeV are also derived. The upper limits are consistent with the attenuation predicted by low-flux EBL models on the assumption of a simple power-law spectrum extrapolated from LAT data.
112 - R.A. Ong , V.A. Acciari , T. Arlen 2009
VERITAS is a state-of-the-art ground-based gamma-ray observatory that operates in the very high-energy (VHE) region of 100 GeV to 50 TeV. The observatory consists of an array of four 12m-diameter imaging atmospheric Cherenkov telescopes located in so uthern Arizona, USA. The four-telescope array has been fully operational since September 2007, and over the last two years, VERITAS has been operating with high efficiency and with excellent performance. This talk summarizes the recent results from VERITAS, including the discovery of eight new VHE gamma-ray sources.
The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a two-year multiwavelength campaign led by the Whole Earth Blazar Telescope (WE BT) to study both the quasar core and the beamed jet of this source. The WEBT data are complemented by ultraviolet and X-ray data from Swift, and by gamma-ray data by Fermi. The big blue bump is modelled by using optical and near-infrared mean spectra obtained during the campaign, together with optical and ultraviolet quasar templates. We give prescriptions to correct the source photometry in the various bands for the thermal contribution, in order to derive the non-thermal jet flux. The role of the intergalactic medium absorption is analysed in both the ultraviolet and X-ray bands. We provide opacity values to deabsorb ultraviolet data, and derive a best-guess value for the hydrogen column density through the analysis of X-ray spectra. We estimate the disc and jet bolometric luminosities, accretion rate, and black hole mass. Light curves do not show persistent correlations among flux changes at different frequencies. We study the polarimetric behaviour and find no correlation between polarisation degree and flux, even when correcting for the dilution effect of the big blue bump. Similarly, wide rotations of the electric vector polarisation angle do not seem to be connected with the source activity.
A decade after the discovery of TeV gamma-rays from the blazar Mrk 421 (Punch et al. 1992), the list of TeV blazars has increased to five BL Lac objects: Mrk 421 (Punch et al. 1992; Petry et al. 1996; Piron et al. 2001), Mrk 501 (Quinn et al. 1996; A haronian et al. 1999; Djannati-Atai et al. 1999), 1ES2344+514 (Catanese et al. 1998), H1426+428 (Horan et al. 2000, 2002; Aharonian et al. 2002; Djannati-Atai et al. 2002) and 1ES1959+650 (Nishiyama et al. 1999; Konopelko et al. 2002; Holder et al. 2002). In this paper we report results from recent observations of Mrk 421, H1426+428 and 1ES1959+650 using the Whipple Observatory 10 m telescope.
216 - Konstantin Pfrang 2021
Ground-based $gamma$-ray observatories, such as the VERITAS array of imaging atmospheric Cherenkov telescopes, provide insight into very-high-energy (VHE, $mathrm{E}>100,mathrm{GeV}$) astrophysical transient events. Examples include the evaporation o f primordial black holes, gamma-ray bursts and flaring blazars. Identifying such events with a serendipitous location and time of occurrence is difficult. Thus, employing a robust search method becomes crucial. An implementation of a transient detection method based on deep-learning techniques for VERITAS will be presented. This data-driven approach significantly reduces the dependency on the characterization of the instrument response and the modelling of the expected transient signal. The response of the instrument is affected by various factors, such as the elevation of the source and the night sky background. The study of these effects allows enhancing the deep learning method with additional parameters to infer their influences on the data. This improves the performance and stability for a wide range of observational conditions. We illustrate our method for an historic flare of the blazar BL Lac that was detected by VERITAS in October 2016. We find a promising performance for the detection of such a flare in timescales of minutes that compares well with the VERITAS standard analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا