ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Very-High-Energy Gamma Rays from the z = 0.896 Quasar 4C +55.17 with the MAGIC telescopes

183   0   0.0 ( 0 )
 نشر من قبل Hajime Takami
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The bright gamma-ray quasar 4C +55.17 is a distant source ($z = 0.896$) with a hard spectrum at GeV energies as observed by the Large Area Telescope (LAT) on board the {{it Fermi}} satellite. This source is identified as a good source candidate for very-high-energy (VHE; $> 30$ GeV) gamma rays. In general VHE gamma rays from distant sources provide an unique opportunity to study the extragalactic background light (EBL) and underlying astrophysics. The flux intensity of this source in the VHE range is investigated. Then, constraints on the EBL are derived from the attenuation of gamma-ray photons coming from the distant blazar. We searched for a gamma-ray signal from this object using the 35-hour observations taken by the MAGIC telescopes between November 2010 and January 2011. No significant VHE gamma-ray signal was detected. We computed the upper limits of the integrated gamma-ray flux at $95%$ confidence level of $9.4 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ and $2.5 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ above $100$ GeV and $200$ GeV, respectively. The differential upper limits in four energy bins in the range from $80$ GeV to $500$ GeV are also derived. The upper limits are consistent with the attenuation predicted by low-flux EBL models on the assumption of a simple power-law spectrum extrapolated from LAT data.



قيم البحث

اقرأ أيضاً

The acceleration of particles up to GeV or higher energies in microquasars has been the subject of considerable theoretical and observational efforts in the past few years. Sco X-1 is a microquasar from which evidence of highly energetic particles in the jet has been found when it is in the so-called Horizontal Branch (HB), a state when the radio and hard X-ray fluxes are higher and a powerful relativistic jet is present. Here we present the first very high energy gamma-ray observations of Sco X-1 obtained with the MAGIC telescopes. An analysis of the whole dataset does not yield a significant signal, with 95% CL flux upper limits above 300 GeV at the level of 2.4x10^{-12} ph/cm^2/s. Simultaneous RXTE observations were conducted to search for TeV emission during particular X-ray states of the source. A selection of the gamma-ray data obtained during the HB based on the X-ray colors did not yield a signal either, with an upper limit of 3.4x10^{-12} ph/cm^2/s. These upper limits place a constraint on the maximum TeV luminosity to non-thermal X-ray luminosity of L_{VHE}/L_{ntX}<0.02, that can be related to a maximum TeV luminosity to jet power ratio of L_{VHE}/L_{j}<10^{-3}. Our upper limits indicate that the underlying high-energy emission physics in Sco X-1 must be inherently different from that of the hitherto detected gamma-ray binaries.
The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black-hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; $Egtrsim60$ MeV) gamma-ray range with textit{Fermi}-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; $Egtrsim100$ GeV) regime during this X-ray state. We analyze $sim97$ hr of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behavior in a multiwavelength context, we compare our results with textit{Fermi}-LAT, textit{AGILE}, textit{Swift}-BAT, textit{MAXI}, textit{RXTE}-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index $Gamma=3.2$. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95% confidence level for energies above 200 GeV at $2.6times10^{-12}$~photons cm$^{-2}$s$^{-1}$ and $1.0times10^{-11}$~photons cm$^{-2}$s$^{-1}$, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.
We report on the detection of very-high energy (VHE, E>100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6 sigma above 100 GeV in 46 hr of stereo observations carried out between August 2010 and February 2011. The measured differential energy spectrum between 70 GeV and 500 GeV can be described by a power law with a steep spectral index of Gamma=-4.1+/-0.7stat+/-0.3syst, and the average flux above 100 GeV is F_{gamma}=(1.3+/-0.2stat+/-0.3syst) x 10^-11 cm^-2 s^-1. These results, combined with the power-law spectrum measured in the first two years of observations by the Fermi-LAT above 100 MeV, with a spectral index of Gamma ~ -2.1, strongly suggest the presence of a break or cut-off around tens of GeV in the NGC 1275 spectrum. The light curve of the source above 100 GeV does not show hints of variability on a month time scale. Finally, we report on the nondetection in the present data of the radio galaxy IC 310, previously discovered by the Fermi-LAT and MAGIC. The derived flux upper limit F^{U.L.}_{gamma} (>300 GeV)=1.2 x 10^-12 cm^-2 s^-1 is a factor ~ 3 lower than the mean flux measured by MAGIC between October 2009 and February 2010, thus confirming the year time-scale variability of the source at VHE.
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day d elay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.
The number of known very high energy (VHE) blazars is $sim,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their l uminosity in the $gamma$-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy $gamma$-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES,0033+595 with a statistical significance of 5.5,$sigma$. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parameterized with a power law with an integral flux above 150 GeV of $(7.1pm1.3)times 10^{-12} {mathrm{ph,cm^{-2},s^{-1}}}$ and a photon index of ($3.8pm0.7$). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by textit{Swift} as well as textit{INTEGRAL}, and simultaneous high energy (HE, $300$,MeV~--~$10$,GeV) $gamma$-ray data from the textit{Fermi} LAT observatory. Using the empirical approach of Prandini et al. (2010) and the textit{Fermi}-LAT and MAGIC spectra for this object, we estimate the redshift of this source to be $0.34pm0.08pm0.05$. This is a relevant result because this source is possibly one of the ten most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا