ﻻ يوجد ملخص باللغة العربية
The bright gamma-ray quasar 4C +55.17 is a distant source ($z = 0.896$) with a hard spectrum at GeV energies as observed by the Large Area Telescope (LAT) on board the {{it Fermi}} satellite. This source is identified as a good source candidate for very-high-energy (VHE; $> 30$ GeV) gamma rays. In general VHE gamma rays from distant sources provide an unique opportunity to study the extragalactic background light (EBL) and underlying astrophysics. The flux intensity of this source in the VHE range is investigated. Then, constraints on the EBL are derived from the attenuation of gamma-ray photons coming from the distant blazar. We searched for a gamma-ray signal from this object using the 35-hour observations taken by the MAGIC telescopes between November 2010 and January 2011. No significant VHE gamma-ray signal was detected. We computed the upper limits of the integrated gamma-ray flux at $95%$ confidence level of $9.4 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ and $2.5 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ above $100$ GeV and $200$ GeV, respectively. The differential upper limits in four energy bins in the range from $80$ GeV to $500$ GeV are also derived. The upper limits are consistent with the attenuation predicted by low-flux EBL models on the assumption of a simple power-law spectrum extrapolated from LAT data.
The acceleration of particles up to GeV or higher energies in microquasars has been the subject of considerable theoretical and observational efforts in the past few years. Sco X-1 is a microquasar from which evidence of highly energetic particles in
The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black-hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; $Egtrsim60$ MeV)
We report on the detection of very-high energy (VHE, E>100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day d
The number of known very high energy (VHE) blazars is $sim,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their l