ﻻ يوجد ملخص باللغة العربية
Ground-based $gamma$-ray observatories, such as the VERITAS array of imaging atmospheric Cherenkov telescopes, provide insight into very-high-energy (VHE, $mathrm{E}>100,mathrm{GeV}$) astrophysical transient events. Examples include the evaporation of primordial black holes, gamma-ray bursts and flaring blazars. Identifying such events with a serendipitous location and time of occurrence is difficult. Thus, employing a robust search method becomes crucial. An implementation of a transient detection method based on deep-learning techniques for VERITAS will be presented. This data-driven approach significantly reduces the dependency on the characterization of the instrument response and the modelling of the expected transient signal. The response of the instrument is affected by various factors, such as the elevation of the source and the night sky background. The study of these effects allows enhancing the deep learning method with additional parameters to infer their influences on the data. This improves the performance and stability for a wide range of observational conditions. We illustrate our method for an historic flare of the blazar BL Lac that was detected by VERITAS in October 2016. We find a promising performance for the detection of such a flare in timescales of minutes that compares well with the VERITAS standard analysis.
The next generation of observatories will facilitate the discovery of new types of astrophysical transients. The detection of such phenomena, whose characteristics are presently poorly constrained, will hinge on the ability to perform blind searches.
The follow-up of external science alerts received from Gamma-Ray Bursts (GRB) and Gravitational Waves (GW) detectors is one of the AGILE Teams current major activities. The AGILE team developed an automated real-time analysis pipeline to analyse AGIL
We demonstrate the application of a convolutional neural network to the gravitational wave signals from core collapse supernovae. Using simulated time series of gravitational wave detectors, we show that based on the explosion mechanisms, a convoluti
The VERITAS telescope array has been operating smoothly since 2007, and has detected gamma-ray emission above 100 GeV from 40 astrophysical sources. These include blazars, pulsar wind nebulae, supernova remnants, gamma-ray binary systems, a starburst
Deep learning techniques have been well explored in the transiting exoplanet field, however previous work mainly focuses on classification and inspection. In this work, we develop a novel detection algorithm based on a well-proven object detection fr