ﻻ يوجد ملخص باللغة العربية
Galaxy surveys that map multiple species of tracers of large-scale structure can improve the constraints on some cosmological parameters far beyond the limits imposed by a simplistic interpretation of cosmic variance. This enhancement derives from comparing the relative clustering between different tracers of large-scale structure. We present a simple but fully generic expression for the Fisher information matrix of surveys with any (discrete) number of tracers, and show that the enhancement of the constraints on bias-sensitive parameters are a straightforward consequence of this multi-tracer Fisher matrix. In fact, the relative clustering amplitudes between tracers are eigenvectors of this multi-tracer Fisher matrix. The diagonalized multi-tracer Fisher matrix clearly shows that while the effective volume is bounded by the physical volume of the survey, the relational information between species is unbounded. As an application, we study the expected enhancements in the constraints of realistic surveys that aim at mapping several different types of tracers of large-scale structure. The gain obtained by combining multiple tracers is highest at low redshifts, and in one particular scenario we analyzed, the enhancement can be as large as a factor of ~3 for the accuracy in the determination of the redshift distortion parameter, and a factor ~5 for the local non-Gaussianity parameter. Radial and angular distance determinations from the baryonic features in the power spectrum may also benefit from the multi-tracer approach.
Deep pencil beam surveys (<1 deg^2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties are in practice limited by cosmic variance. This is the uncertainty in observational est
Measuring the total neutrino mass is one of the most exciting opportunities available with next-generation cosmological data sets. We study the possibility of detecting the total neutrino mass using large-scale clustering in 21cm intensity mapping an
Current and future generations of intensity mapping surveys promise dramatic improvements in our understanding of galaxy evolution and large-scale structure. An intensity map provides a census of the cumulative emission from all galaxies in a given r
The next generation of Cosmic Microwave Background experiments will produce cosmic variance limited observations over a large fraction of sky and for a large range of multipoles. In this work we discuss different consistency tests that can be perform
We use mock galaxy data from the VIMOS Public Extragalactic Redshift Survey (VIPERS) to test the performance of the Multi-Tracer Optimal Estimator (MTOE) of Abramo et al. as a tool to measure the monopoles of the power spectra of multiple tracers of