ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the neutrino mass using a multi-tracer combination of two galaxy surveys and CMB lensing

111   0   0.0 ( 0 )
 نشر من قبل Mario Ballardini Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the total neutrino mass is one of the most exciting opportunities available with next-generation cosmological data sets. We study the possibility of detecting the total neutrino mass using large-scale clustering in 21cm intensity mapping and photometric galaxy surveys, together with CMB information. We include the scale-dependent halo bias contribution due to the presence of massive neutrinos, and use a multi-tracer analysis in order to reduce cosmic variance. The multi-tracer combination of an SKAO-MID 21cm intensity map with Stage~4 CMB lensing dramatically shrinks the uncertainty on total neutrino mass to $sigma(M_ u) simeq 45,$meV, using only linear clustering information ($k_{rm max} = 0.1, h/$Mpc) and without a prior on optical depth. When we add to the multi-tracer the clustering information expected from LSST, the forecast is $sigma(M_ u) simeq 12,$meV.

قيم البحث

اقرأ أيضاً

66 - Aoife Boyle 2018
We perform a thorough examination of the neutrino mass ($M_ u$) constraints achievable by combining future spectroscopic galaxy surveys with cosmic microwave background (CMB) experiments, focusing on the contribution of CMB lensing and galaxy-CMB len sing. CMB lensing can help by breaking the $M_ u$-curvature degeneracy when combined with baryon acoustic oscillation (BAO)-only measurements, but we demonstrate this combination wastes a great deal of constraining power, as the broadband shape of the power spectrum contributes significantly to constraints. We also expand on previous work to demonstrate how cosmology-independent constraints on $M_ u$ can be extracted by combining measurements of the scale-dependence in the power spectrum caused by neutrino free-streaming with the full power of future CMB surveys. These free-streaming constraints are independent of the optical depth to the CMB ($tau$) and competitive with constraints from BAOs for extended cosmologies, even when both are combined with CMB lensing and galaxy-CMB lensing.
Cosmic Microwave Background (CMB) is a powerful probe to study the early universe and various cosmological models. Weak gravitational lensing affects the CMB by changing its power spectrum, but meanwhile, it also carries information about the distrib ution of lensing mass and hence, the large scale structure (LSS) of the universe. When studies of the CMB is combined with the tracers of LSS, one can constrain cosmological models, models of LSS development and astrophysical parameters simultaneously. The main focus of this project is to study the cross-correlations between CMB lensing and the galaxy matter density to constrain the galaxy bias ($b$) and the amplitude scaling parameter ($A$), to test the validity of $Lambda$CDM model. We test our approach for simulations of the Planck CMB convergence field and galaxy density field, which mimics the density field of the Herschel Extragalactic Legacy Project (HELP). We use maximum likelihood method to constrain the parameters.
We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effe ct on the bispectrum shape. The suppression of the bispectrum amplitude is a factor of two greater than the suppression of the small scale power-spectrum. For an LSST-like weak lensing survey that observes half of the sky with five tomographic redshift bins, we explore the constraining power of the bispectrum on three cosmological parameters: the sum of the neutrino mass $sum m_ u$, the matter density $Omega_m$ and the amplitude of primordial fluctuations $A_s$. Bispectrum measurements alone provide similar constraints to the power spectrum measurements and combining the two probes leads to significant improvements than using the latter alone. We find that the joint constraints tighten the power spectrum $95%$ constraints by $sim 32%$ for $sum m_ u$, $13%$ for $Omega_m$ and $57%$ for $A_s$ .
We analyze the ability of galaxy and CMB lensing surveys to constrain massive neutrinos and new models of dark radiation. We present a Fisher forecast analysis for neutrino mass constraints with the LSST galaxy survey and the CMB S4 survey. A joint a nalysis of the three galaxy and shear 2-point functions, along with key systematics parameters and Planck priors, constrains the neutrino masses to $sum m_ u = 0.041,$eV at 1-$sigma$ level, comparable to constraints expected from Stage 4 CMB lensing. If low redshift information from upcoming spectroscopic surveys like DESI is included, the constraint becomes $sum m_ u = 0.032,$eV. These constraints are derived having marginalized over the number of relativistic species ($N_{rm eff}$), which is somewhat degenerate with the neutrino mass. We also explore the gain by combining LSST and CMB S4, that is, using the five relevant auto- and cross-correlations of the two datasets. We conclude that advances in modeling the nonlinear regime and the measurements of other parameters are required to ensure a neutrino mass detection. Using the same datasets, we explore the ability of LSST-era surveys to test nonstandard models with dark radiation. We find that if evidence for dark radiation is found from $N_{rm eff}$ measurements, the mass of the dark radiation candidate can be measured at a 1-$sigma$ level of $0.162,$eV for fermionic dark radiation, and $0.137,$eV for bosonic dark radiation, for $Delta N_{rm eff} = 0.15$. We also find that the NNaturalness model of Arkani-Hamed et al 2016, with extra light degrees of freedom, has a sub-percent effect on the power spectrum: even more ambitious surveys than the ones considered here will be needed to test such models.
78 - Ross Cawthon 2018
We explore the effects of incorporating redshift uncertainty into measurements of galaxy clustering and cross-correlations of galaxy positions and cosmic microwave background (CMB) lensing maps. We use a simple Gaussian model for a redshift distribut ion in a redshift bin with two parameters: the mean, $z_0$, and the width, $sigma_z$. We vary these parameters, as well as a galaxy bias parameter, $b_{text{g}}$, and a matter fluctuations parameter, $sigma_8$, for each redshift bin, as well as the parameter $Omega_{text{m}}$, in a Fisher analysis across 12 redshift bins from $z=0-7$. We find that incorporating redshift uncertainties degrades constraints on $sigma_8(z)$ in the Large Synoptic Survey Telescope (LSST)/CMB-S4 era by about a factor of 10 compared to the case of perfect redshift knowledge. In our fiducial analysis of LSST/CMB-S4 including redshift uncertainties, we project constraints on $sigma_8(z)$ for $z<3$ of less than $5 %$. Galaxy imaging surveys are expected to have priors on redshift parameters from photometric redshift algorithms and other methods. When adding priors with the expected precision for LSST redshift algorithms, the constraints on $sigma_8(z)$ can be improved by a factor of 2-3 compared to the case of no prior information. We also find that `self-calibrated constraints on the redshift parameters from just the autocorrelation and cross-correlation measurements (with no prior information) are competitive with photometric redshift techniques. In the LSST/CMB-S4 era, we find uncertainty on the redshift parameters ($z_0,sigma_z$) to be below 0.004(1+z) at $z<1$. For all parameters, constraints improve significantly if smaller scales can be used. We also project constraints for nearer term survey combinations, Dark Energy Survey (DES)/SPT-SZ, DES/SPT-3G, and LSST/SPT-3G, and analyze how our constraints depend on a variety of parameter and model choices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا