ﻻ يوجد ملخص باللغة العربية
Current and future generations of intensity mapping surveys promise dramatic improvements in our understanding of galaxy evolution and large-scale structure. An intensity map provides a census of the cumulative emission from all galaxies in a given region and redshift, including faint objects that are undetectable individually. Furthermore, cross-correlations between line intensity maps and galaxy redshift surveys are sensitive to the line intensity and clustering bias without the limitation of cosmic variance. Using the Fisher information matrix, we derive simple expressions describing sensitivities to the intensity and bias obtainable for cross-correlation surveys, focusing on cosmic variance evasion. Based on these expressions, we conclude that the optimal sensitivity is obtained by matching the survey depth, defined by the ratio of the clustering power spectrum to noise in a given mode, between the two surveys. We find that mid- to far-infrared space telescopes could benefit from this technique by cross-correlating with coming galaxy redshift surveys such as those planned for the Nancy Grace Roman Space Telescope, allowing for sensitivities beyond the cosmic variance limit. Our techniques can therefore be applied to survey design and requirements development to maximize the sensitivities of future intensity mapping experiments to tracers of galaxy evolution and large-scale structure cosmology.
Following the first two annual intensity mapping workshops at Stanford in March 2016 and Johns Hopkins in June 2017, we report on the recent advances in theory, instrumentation and observation that were presented in these meetings and some of the opp
Intensity mapping of the HI 21 cm line and the CO 2.61 mm line from the epoch of reionization has emerged as powerful, complementary, probes of the high-redshift Universe. However, both maps and their cross-correlation are dominated by foregrounds. W
The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational transitions between $zsim1-5$. We s
Intensity mapping of the H I 21 cm line and the CO 2.61 mm line from the epoch of reionization has emerged as powerful, complementary, probes of the high-redshift Universe. However, both maps and their cross-correlation are dominated by foregrounds.
21 cm intensity mapping has arisen as a powerful probe of the high-redshift universe, but its potential is limited by extremely bright foregrounds and high source confusion. In this Letter, we propose a new analysis which can help solve both problems