ترغب بنشر مسار تعليمي؟ اضغط هنا

Local tadpole galaxies: dynamics and metallicity

388   0   0.0 ( 0 )
 نشر من قبل J. Sanchez Almeida
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tadpole galaxies, with a bright peripheral clump on a faint tail, are morphological types unusual in the nearby universe but very common early on. Low mass local tadpoles were identified and studied photometrically in a previous work, which we complete here analyzing their chemical and dynamical properties. We measure Halpha velocity curves of seven local tadpoles, representing 50% of the initial sample. Five of them show evidence for rotation (sim 70%), and a sixth target hints at it. Often the center of rotation is spatially offset with respect to the tadpole head (3 out of 5 cases). The size and velocity dispersion of the heads are typical of giant HII regions, and three of them yield dynamical masses in fair agreement with their stellar masses as inferred from photometry. In four cases the velocity dispersion at the head is reduced with respect to its immediate surroundings. The oxygen metallicity estimated from [NII]6583/Halpha often shows significant spatial variations across the galaxies (sim 0.5 dex), being smallest at the head and larger elsewhere. The resulting chemical abundance gradients are opposite to the ones observed in local spirals, but agrees with disk galaxies at high redshift. We interpret the metallicity variation as a sign of external gas accretion (cold-flows) onto the head of the tadpole. The galaxies are low metallicity outliers of the mass-metallicity relationship. In particular, two of the tadpole heads are extremely metal poor, with a metallicity smaller than a tenth of the solar value. These two targets are also very young (ages smaller than 5 Myr). All these results combined are consistent with the local tadpole galaxies being disks in early stages of assembling, with their star formation sustained by accretion of external metal poor gas.

قيم البحث

اقرأ أيضاً

Tadpole galaxies have a giant star-forming region at the end of an elongated intensity distribution. Here we use SDSS data to determine the ages, masses, and surface densities of the heads and tails in 14 local tadpoles selected from the Kiso and Mic higan surveys of UV-bright galaxies, and we compare them to tadpoles previously studied in the Hubble Ultra Deep Field. The young stellar mass in the head scales linearly with restframe galaxy luminosity, ranging from ~10^5 M_solar at galaxy absolute magnitude U=-13 mag to 10^9 M_solar at U=-20 mag. The corresponding head surface density increases from several M_solar pc^{-2} locally to 10-100 M_solar pc^{-2} at high redshift, and the star formation rate per unit area in the head increases from ~0.01 M_solar yr^{-1} kpc^{-2} locally to ~1 M_solar yr^{-1} kpc^{-2} at high z. These local values are normal for star-forming regions, and the increases with redshift are consistent with other cosmological star formation rates, most likely reflecting an increase in gas abundance. The tails in the local sample look like bulge-free galaxy disks. Their photometric ages decrease from several Gyr to several hundred Myr with increasing z, and their surface densities are more constant than the surface densities of the heads. The far outer intensity profiles in the local sample are symmetric and exponential. We suggest that most local tadpoles are bulge-free galaxy disks with lopsided star formation, perhaps from environmental effects such as ram pressure or disk impacts, or from a Jeans length comparable to half the disk size.
Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF), and we looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10^7-10^8 Msun and photometric ages of ~0.1 Gyr for z~2. The tails have slightly larger masses than the heads, and comparable or slightly older ages. The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically less than 0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have been observed already in the Virgo cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters are shown.
We show that the mass-metallicity relation observed in the local universe is due to a more general relation between stellar mass M*, gas-phase metallicity and SFR. Local galaxies define a tight surface in this 3D space, the Fundamental Metallicity Re lation (FMR), with a small residual dispersion of ~0.05 dex in metallicity, i.e, ~12%. At low stellar mass, metallicity decreases sharply with increasing SFR, while at high stellar mass, metallicity does not depend on SFR. High redshift galaxies, up to z~2.5 are found to follow the same FMR defined by local SDSS galaxies, with no indication of evolution. The evolution of the mass-metallicity relation observed up to z=2.5 is due to the fact that galaxies with progressively higher SFRs, and therefore lower metallicities, are selected at increasing redshifts, sampling different parts of the same FMR. By introducing the new quantity mu_alpha=log(M*)-alpha log(SFR), with alpha=0.32, we define a projection of the FMR that minimizes the metallicity scatter of local galaxies. The same quantity also cancels out any redshift evolution up to z~2.5, i.e, all galaxies have the same range of values of mu_0.32. At z>2.5, evolution of about 0.6 dex off the FMR is observed, with high-redshift galaxies showing lower metallicities. The existence of the FMR can be explained by the interplay of infall of pristine gas and outflow of enriched material. The former effect is responsible for the dependence of metallicity with SFR and is the dominant effect at high-redshift, while the latter introduces the dependence on stellar mass and dominates at low redshift. The combination of these two effects, together with the Schmidt-Kennicutt law, explains the shape of the FMR and the role of mu_0.32. The small metallicity scatter around the FMR supports the smooth infall scenario of gas accretion in the local universe.
Tadpole Galaxies look like a star forming head with a tail structure to the side. They are also named cometaries. In a series of recent works we have discovered a number of issues that lead us to consider them extremely interesting targets. First, fr om images, they are disks with a lopsided starburst. This result is firmly established with long slit spectroscopy in a nearby representative sample. They rotate with the head following the rotation pattern but displaced from the rotation center. Moreover, in a search for extremely metal poor (XMP) galaxies, we identified tadpoles as the dominant shapes in the sample- nearly 80% of the local XMP galaxies have a tadpole morphology. In addition, the spatially resolved analysis of the metallicity shows the remarkable result that there is a metallicity drop right at the position of the head. This is contrary to what intuition would say and difficult to explain if star formation has happened from gas processed in the disk. The result could however be understood if the star formation is driven by pristine gas falling into the galaxy disk. If confirmed, we could be unveiling, for the first time, cool flows in action in our nearby world. The tadpole class is relatively frequent at high redshift - 10% of resolvable galaxies in the Hubble UDF but less than 1% in the local Universe. They are systems that could track cool flows and test models of galaxy formation.
Recent results have suggested that the well known mass-metallicity relation has a strong dependence on the star formation rate, to the extent that a three dimensional `fundamental metallicity relation exists which links the three parameters with mini mal scatter. In this work, we use a sample of 4253 local galaxies observed in atomic hydrogen from the ALFALFA survey to demonstrate, for the first time, that a similar fundamental relation (the HI-FMR) also exists between stellar mass, gas-phase metallicity, and HI mass. This latter relation is likely more fundamental, driving the relation between metallicity, SFR and mass. At intermediate masses, the behaviour of the gas fundamental metallicity relation is very similar to that expressed via the star formation rate. However, we find that the dependence of metallicity on HI content persists to the highest stellar masses, in contrast to the `saturation of metallicity with SFR. It is interesting to note that the dispersion of the relation is very low at intermediate stellar masses (9< log(M*/Msun) <11), suggesting that in this range galaxies evolve smoothy, in an equilibrium between gas inflow, outflow and star formation. At high and low stellar masses, the scatter of the relation is significantly higher, suggesting that merging events and/or stochastic accretion and star formation may drive galaxies outside the relation. We also assemble a sample of galaxies observed in CO. However, due to a small sample size, strong selection bias, and the influence of a metallicity-dependent CO/H2 conversion factor, the data are insufficient to test any influence of molecular gas on metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا