ﻻ يوجد ملخص باللغة العربية
Tadpole Galaxies look like a star forming head with a tail structure to the side. They are also named cometaries. In a series of recent works we have discovered a number of issues that lead us to consider them extremely interesting targets. First, from images, they are disks with a lopsided starburst. This result is firmly established with long slit spectroscopy in a nearby representative sample. They rotate with the head following the rotation pattern but displaced from the rotation center. Moreover, in a search for extremely metal poor (XMP) galaxies, we identified tadpoles as the dominant shapes in the sample- nearly 80% of the local XMP galaxies have a tadpole morphology. In addition, the spatially resolved analysis of the metallicity shows the remarkable result that there is a metallicity drop right at the position of the head. This is contrary to what intuition would say and difficult to explain if star formation has happened from gas processed in the disk. The result could however be understood if the star formation is driven by pristine gas falling into the galaxy disk. If confirmed, we could be unveiling, for the first time, cool flows in action in our nearby world. The tadpole class is relatively frequent at high redshift - 10% of resolvable galaxies in the Hubble UDF but less than 1% in the local Universe. They are systems that could track cool flows and test models of galaxy formation.
Tadpole galaxies have a giant star-forming region at the end of an elongated intensity distribution. Here we use SDSS data to determine the ages, masses, and surface densities of the heads and tails in 14 local tadpoles selected from the Kiso and Mic
We use the data for the Hbeta emission-line, far-ultraviolet (FUV) and mid-infrared 22 micron continuum luminosities to estimate star formation rates <SFR> averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming ga
Aims: The purpose of this work is to study the properties of the spatial distribution of the young population in three nearby galaxies in order to better understand the first stages of star formation. Methods: We used ACS/HST photometry and the pat
Galaxy evolution is generally affected by tidal interactions. Firstly, in this series, we reported several effects which suggest that tidal interactions contribute to regulating star formation (SF). To confirm that so, we now compare stellar mass ass
Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effect