ﻻ يوجد ملخص باللغة العربية
Impacts between planetary-sized bodies can explain the origin of satellites orbiting large ($R>500$~km) trans-Neptunian objects. Their water rich composition, along with the complex phase diagram of water, make it important to accurately model the wide range of thermodynamic conditions material experiences during an impact event and in the debris disk. Since differences in the thermodynamics may influence the system dynamics, we seek to evaluate how the choice of an equation of state (EOS) alters the systems evolution. Specifically, we compare two EOSs that are constructed by different approaches: either by a simplified analytic description (Tillotson), or by interpolation of tabulated data (Sesame). Approximately $50$ pairs of Smoothed Particle Hydrodynamics impact simulations were performed, with similar initial conditions but different EOSs, in the parameter space in which the Pluto-Charon binary is thought to form (slow impacts between Pluto-size, water rich bodies). Generally, we show that impact outcomes (e.g., circumplanetary debris disk) are consistent between EOSs. Some differences arise, importantly in the production of satellitesimals (large intact clumps) that form in the post-impact debris disk. When utilizing an analytic EOS, the emergence of satellitesimals is highly certain, while when using the tabulated EOS it is less common. This is because for the typical densities and energies experienced in these impacts, the analytic EOS predicts very low pressure values, leading to particles artificially aggregating by a tensile instability.
The discovery of a large putative impact crater buried beneath Hiawatha Glacier along the margin of the northwestern Greenland Ice Sheet has reinvigorated interest into the nature of large impacts into thick ice masses. This circular structure is rel
Dynamical scenarios of terrestrial planets formation involve strong perturbations of the inner part of the solar system by the giant-planets, leading to enhanced impact velocities and subsequent collisional erosion. We quantitatively estimate the eff
Gravity inversion allows us to constrain the interior mass distribution of a planetary body using the observed shape, rotation, and gravity. Traditionally, techniques developed for gravity inversion can be divided into Monte Carlo methods, matrix inv
Molecular kinetic simulations are typically used to accurately describe the tenuous regions of the upper atmospheres on planetary bodies. These simulations track the motion of particles representing real atmospheric atoms and/or molecules subject to
Aims: The secondary atmospheres of terrestrial planets form and evolve as a consequence of interaction with the interior over geological time. We aim to quantify the influence of planetary bulk composition on the interior--atmosphere evolution for Ea