ترغب بنشر مسار تعليمي؟ اضغط هنا

Informational Divergence Approximations to Product Distributions

50   0   0.0 ( 0 )
 نشر من قبل Jie Hou
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The minimum rate needed to accurately approximate a product distribution based on an unnormalized informational divergence is shown to be a mutual information. This result subsumes results of Wyner on common information and Han-Verd{u} on resolvability. The result also extends to cases where the source distribution is unknown but the entropy is known.

قيم البحث

اقرأ أيضاً

Renyi divergence is related to Renyi entropy much like Kullback-Leibler divergence is related to Shannons entropy, and comes up in many settings. It was introduced by Renyi as a measure of information that satisfies almost the same axioms as Kullback -Leibler divergence, and depends on a parameter that is called its order. In particular, the Renyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of Renyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of $sigma$-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.
122 - Igal Sason , Sergio Verdu 2015
This paper develops systematic approaches to obtain $f$-divergence inequalities, dealing with pairs of probability measures defined on arbitrary alphabets. Functional domination is one such approach, where special emphasis is placed on finding the be st possible constant upper bounding a ratio of $f$-divergences. Another approach used for the derivation of bounds among $f$-divergences relies on moment inequalities and the logarithmic-convexity property, which results in tight bounds on the relative entropy and Bhattacharyya distance in terms of $chi^2$ divergences. A rich variety of bounds are shown to hold under boundedness assumptions on the relative information. Special attention is devoted to the total variation distance and its relation to the relative information and relative entropy, including reverse Pinsker inequalities, as well as on the $E_gamma$ divergence, which generalizes the total variation distance. Pinskers inequality is extended for this type of $f$-divergence, a result which leads to an inequality linking the relative entropy and relative information spectrum. Integral expressions of the Renyi divergence in terms of the relative information spectrum are derived, leading to bounds on the Renyi divergence in terms of either the variational distance or relative entropy.
We study the impact of delayed channel state information at the transmitters (CSIT) in two-unicast wireless networks with a layered topology and arbitrary connectivity. We introduce a technique to obtain outer bounds to the degrees-of-freedom (DoF) r egion through the new graph-theoretic notion of bottleneck nodes. Such nodes act as informational bottlenecks only under the assumption of delayed CSIT, and imply asymmetric DoF bounds of the form $mD_1 + D_2 leq m$. Combining this outer-bound technique with new achievability schemes, we characterize the sum DoF of a class of two-unicast wireless networks, which shows that, unlike in the case of instantaneous CSIT, the DoF of two-unicast networks with delayed CSIT can take an infinite set of values.
For gambling on horses, a one-parameter family of utility functions is proposed, which contains Kellys logarithmic criterion and the expected-return criterion as special cases. The strategies that maximize the utility function are derived, and the co nnection to the Renyi divergence is shown. Optimal strategies are also derived when the gambler has some side information; this setting leads to a novel conditional Renyi divergence.
This paper proposes highly accurate closed-form approximations to channel distributions of two different reconfigurable intelligent surface (RIS)-based wireless system setups, namely, dual-hop RIS-aided (RIS-DH) scheme and RIS-aided transmit (RIS-T) scheme. Differently from previous works, the proposed approximations reveal to be very tight for arbitrary number $N$ of reflecting metasurfaces elements. Our findings are then applied to the performance analysis of the considered systems, in which the outage probability, bit error rate, and average channel capacity are derived. Results show that the achievable diversity orders $G_d$ for RIS-DH and RIS-T schemes are $N-1<G_d<N$ and $N$, respectively. Furthermore, it is revealed that both schemes can not provide the multiplexing gain and only diversity gains are achieved. For the RIS-DH scheme, the channels are similar to the keyhole multiple-input multiple-output (MIMO) channels with only one degree of freedom, while the RIS-T scheme is like the transmit diversity structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا