ﻻ يوجد ملخص باللغة العربية
This paper proposes highly accurate closed-form approximations to channel distributions of two different reconfigurable intelligent surface (RIS)-based wireless system setups, namely, dual-hop RIS-aided (RIS-DH) scheme and RIS-aided transmit (RIS-T) scheme. Differently from previous works, the proposed approximations reveal to be very tight for arbitrary number $N$ of reflecting metasurfaces elements. Our findings are then applied to the performance analysis of the considered systems, in which the outage probability, bit error rate, and average channel capacity are derived. Results show that the achievable diversity orders $G_d$ for RIS-DH and RIS-T schemes are $N-1<G_d<N$ and $N$, respectively. Furthermore, it is revealed that both schemes can not provide the multiplexing gain and only diversity gains are achieved. For the RIS-DH scheme, the channels are similar to the keyhole multiple-input multiple-output (MIMO) channels with only one degree of freedom, while the RIS-T scheme is like the transmit diversity structure.
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communica
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amoun
This paper investigates the problem of model aggregation in federated learning systems aided by multiple reconfigurable intelligent surfaces (RISs). The effective integration of computation and communication is achieved by over-the-air computation (A
A reconfigurable intelligent surface (RIS) consists of massive meta elements, which can improve the performance of future wireless communication systems. Existing RIS-aided channel estimation methods try to estimate the cascaded channel directly, inc
In this paper, we investigate the performance of a reconfigurable intelligent surface (RIS)-assisted dual-hop mixed radio-frequency underwater wireless optical communication (RF-UWOC) system. An RIS is an emerging and low-cost technology that aims to