ترغب بنشر مسار تعليمي؟ اضغط هنا

Informational Bottlenecks in Two-Unicast Wireless Networks with Delayed CSIT

49   0   0.0 ( 0 )
 نشر من قبل Alireza Vahid
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of delayed channel state information at the transmitters (CSIT) in two-unicast wireless networks with a layered topology and arbitrary connectivity. We introduce a technique to obtain outer bounds to the degrees-of-freedom (DoF) region through the new graph-theoretic notion of bottleneck nodes. Such nodes act as informational bottlenecks only under the assumption of delayed CSIT, and imply asymmetric DoF bounds of the form $mD_1 + D_2 leq m$. Combining this outer-bound technique with new achievability schemes, we characterize the sum DoF of a class of two-unicast wireless networks, which shows that, unlike in the case of instantaneous CSIT, the DoF of two-unicast networks with delayed CSIT can take an infinite set of values.



قيم البحث

اقرأ أيضاً

The Maddah-Ali and Tse (MAT) scheme is a linear precoding strategy that exploits Interference Alignment and perfect, but delayed, channel state information at the transmitters (delayed CSIT), improving the degrees of freedom (DoF) that can be achieve d for the broadcast channel (BC). Since its appearance, many works have extended the concept of Retrospective Interference Alignment (RIA) to other multi-user channel configurations. However, little is known about the broadcast channel with multiple cells, i.e. the interference broadcast channel (IBC). In this work, the DoF are studied for the $K$-user $C$-cell multiple-input single-output (MISO) IBC with delayed CSIT (with $K/C$ users per cell). We show that the straightforward application of the MAT scheme over the IBC fails because it requires all interference to be received from the same source. Hence, in this case not all the interference can be cancelled, thus blocking the decoding of the received messages. We call this phenomenon as textit{interference coupling}, forcing to use the MAT scheme by serving just one cell at a time. In this work, we propose an extension, namely the uncoupled MAT scheme (uMAT), exploiting multiple cells, uncoupling the interference, and achieving the best known DoF inner bound for almost all settings.
73 - Jun Zhang , Jie Liu , Shaodan Ma 2021
Reconfigurable intelligent surface (RIS) is an emerging technology to enhance wireless communication in terms of energy cost and system performance by equipping a considerable quantity of nearly passive reflecting elements. This study focuses on a do wnlink RIS-assisted multiple-input multiple-output (MIMO) wireless communication system that comprises three communication links of Rician channel, including base station (BS) to RIS, RIS to user, and BS to user. The objective is to design an optimal transmit covariance matrix at BS and diagonal phase-shifting matrix at RIS to maximize the achievable ergodic rate by exploiting the statistical channel state information at BS. Therefore, a large-system approximation of the achievable ergodic rate is derived using the replica method in large dimension random matrix theory. This large-system approximation enables the identification of asymptotic-optimal transmit covariance and diagonal phase-shifting matrices using an alternating optimization algorithm. Simulation results show that the large-system results are consistent with the achievable ergodic rate calculated by Monte Carlo averaging. The results verify that the proposed algorithm can significantly enhance the RIS-assisted MIMO system performance.
We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate regi on. This idea is applicable to all systems which use the compute-and-forward technique and can be arbitrarily better than the regular scheme in some settings.
This paper analyzes the impact and benefits of infrastructure support in improving the throughput scaling in networks of $n$ randomly located wireless nodes. The infrastructure uses multi-antenna base stations (BSs), in which the number of BSs and th e number of antennas at each BS can scale at arbitrary rates relative to $n$. Under the model, capacity scaling laws are analyzed for both dense and extended networks. Two BS-based routing schemes are first introduced in this study: an infrastructure-supported single-hop (ISH) routing protocol with multiple-access uplink and broadcast downlink and an infrastructure-supported multi-hop (IMH) routing protocol. Then, their achievable throughput scalings are analyzed. These schemes are compared against two conventional schemes without BSs: the multi-hop (MH) transmission and hierarchical cooperation (HC) schemes. It is shown that a linear throughput scaling is achieved in dense networks, as in the case without help of BSs. In contrast, the proposed BS-based routing schemes can, under realistic network conditions, improve the throughput scaling significantly in extended networks. The gain comes from the following advantages of these BS-based protocols. First, more nodes can transmit simultaneously in the proposed scheme than in the MH scheme if the number of BSs and the number of antennas are large enough. Second, by improving the long-distance signal-to-noise ratio (SNR), the received signal power can be larger than that of the HC, enabling a better throughput scaling under extended networks. Furthermore, by deriving the corresponding information-theoretic cut-set upper bounds, it is shown under extended networks that a combination of four schemes IMH, ISH, MH, and HC is order-optimal in all operating regimes.
We study a heterogeneous two-tier wireless sensor network in which N heterogeneous access points (APs) collect sensing data from densely distributed sensors and then forward the data to M heterogeneous fusion centers (FCs). This heterogeneous node de ployment problem is modeled as an optimization problem with the total power consumption of the network as its cost function. The necessary conditions of the optimal AP and FC node deployment are explored in this paper. We provide a variation of Voronoi Diagram as the optimal cell partition for this network and show that each AP should be placed between its connected FC and the geometric center of its cell partition. In addition, we propose a heterogeneous two-tier Lloyd algorithm to optimize the node deployment. Furthermore, we study the sensor deployment when the communication range is limited for sensors and APs. Simulation results show that our proposed algorithms outperform the existing clustering methods like Minimum Energy Routing, Agglomerative Clustering, Divisive Clustering, Particle Swarm Optimization, Relay Node placement in Double-tiered Wireless Sensor Networks, and Improved Relay Node Placement, on average.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا