ﻻ يوجد ملخص باللغة العربية
We study the impact of delayed channel state information at the transmitters (CSIT) in two-unicast wireless networks with a layered topology and arbitrary connectivity. We introduce a technique to obtain outer bounds to the degrees-of-freedom (DoF) region through the new graph-theoretic notion of bottleneck nodes. Such nodes act as informational bottlenecks only under the assumption of delayed CSIT, and imply asymmetric DoF bounds of the form $mD_1 + D_2 leq m$. Combining this outer-bound technique with new achievability schemes, we characterize the sum DoF of a class of two-unicast wireless networks, which shows that, unlike in the case of instantaneous CSIT, the DoF of two-unicast networks with delayed CSIT can take an infinite set of values.
The Maddah-Ali and Tse (MAT) scheme is a linear precoding strategy that exploits Interference Alignment and perfect, but delayed, channel state information at the transmitters (delayed CSIT), improving the degrees of freedom (DoF) that can be achieve
Reconfigurable intelligent surface (RIS) is an emerging technology to enhance wireless communication in terms of energy cost and system performance by equipping a considerable quantity of nearly passive reflecting elements. This study focuses on a do
We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate regi
This paper analyzes the impact and benefits of infrastructure support in improving the throughput scaling in networks of $n$ randomly located wireless nodes. The infrastructure uses multi-antenna base stations (BSs), in which the number of BSs and th
We study a heterogeneous two-tier wireless sensor network in which N heterogeneous access points (APs) collect sensing data from densely distributed sensors and then forward the data to M heterogeneous fusion centers (FCs). This heterogeneous node de