ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of homophily and heterophily on preferred-degree networks: mean-field analysis and overwhelming transition

108   0   0.0 ( 0 )
 نشر من قبل Xiang Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the long-time properties of a dynamic, out-of-equilibrium, network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents opinions are fixed, they have a preferred degree which leads them to endlessly create and delete links. Our evolving network is shaped by homophily/heterophily, which is a form of social interaction by which individuals tend to establish links with others having similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-field analysis, we study in detail how the sizes of the communities and the degree of homophily/heterophily affects the network structure. In particular, we show that when the network is subject to enough heterophily, an overwhelming transition occurs: individuals of the smaller community are overwhelmed by links from agents of the larger group, and their mean degree greatly exceeds the preferred degree. This and related phenomena are characterized by obtaining the networks total and joint degree distributions, as well as the fraction of links across both communities and that of agents having less edges than the preferred degree. We use our mean-field theory to discuss the networks polarization when the group sizes and level of homophily vary.



قيم البحث

اقرأ أيضاً

We propose a generalized framework for the study of voter models in complex networks at the the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of furthe r heterogeneity through degree-selectivity rules. In the context of the HMF approximation, our model is capable of providing straightforward estimates for central quantities such as the exit probability and the consensus/fixation time, based on the statistical properties of the complex network alone. The HMF approach has the advantage of being readily applicable also in those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to understand previously proposed voter-like processes as simple limits of the generalized model.
We study a simple model of dynamic networks, characterized by a set preferred degree, $kappa$. Each node with degree $k$ attempts to maintain its $kappa$ and will add (cut) a link with probability $w(k;kappa)$ ($1-w(k;kappa)$). As a starting point, w e consider a homogeneous population, where each node has the same $kappa$, and examine several forms of $w(k;kappa)$, inspired by Fermi-Dirac functions. Using Monte Carlo simulations, we find the degree distribution in steady state. In contrast to the well-known ErdH{o}s-R{e}nyi network, our degree distribution is not a Poisson distribution; yet its behavior can be understood by an approximate theory. Next, we introduce a second preferred degree network and couple it to the first by establishing a controllable fraction of inter-group links. For this model, we find both understandable and puzzling features. Generalizing the prediction for the homogeneous population, we are able to explain the total degree distributions well, but not the intra- or inter-group degree distributions. When monitoring the total number of inter-group links, $X$, we find very surprising behavior. $X$ explores almost the full range between its maximum and minimum allowed values, resulting in a flat steady-state distribution, reminiscent of a simple random walk confined between two walls. Both simulation results and analytic approaches will be discussed.
Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world networks with clustering and modular structure. In this paper, we compare mean-field predictions to numerical simulation results for dynamical processes running on 21 real-world networks and demonstrate that the accuracy of the theory depends not only on the mean degree of the networks but also on the mean first-neighbor degree. We show that mean-field theory can give (unexpectedly) accurate results for certain dynamics on disassortative real-world networks even when the mean degree is as low as 4.
We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.
We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address var ious notions of the network robustness relevant to multiplex networks such as the resilience of ordinary- and mutual connectivity under random or targeted node removals as well as the biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in diverse fashion. For example, for maximally-correlated duplex networks, all pairs of nodes in the giant component are connected via at least two independent paths and network structure is highly resilient to random failure. In contrast, anti-correlated duplex networks are on one hand robust against targeted attack on high-degree nodes, but on the other hand they can be vulnerable to random failure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا