ﻻ يوجد ملخص باللغة العربية
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the the velocity is in $L^1_t Lip$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors corresponding to the non relativistic problem. All our results are valid for a general equation of state $p(varrho)= varrho^gamma$, $gamma > 1$.
In this paper, we establish a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, the $gamma$-gas law equation of state for $gamma=2$ and the general initial density $ri in H^5$. Because of th
We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas develope
This article is concerned with the local well-posedness problem for the compressible Euler equations in gas dynamics. For this system we consider the free boundary problem which corresponds to a physical vacuum. Despite the clear physical interest in
We prove the continuous dependence of the solution maps for the Euler equations in the (critical) Triebel-Lizorkin spaces, which was not shown in the previous works(cite{Ch02, Ch03, ChMiZh10}). The proof relies on the classical Bona-Smith method as c
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition