ترغب بنشر مسار تعليمي؟ اضغط هنا

The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion

103   0   0.0 ( 0 )
 نشر من قبل Marcelo Disconzi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the the velocity is in $L^1_t Lip$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors corresponding to the non relativistic problem. All our results are valid for a general equation of state $p(varrho)= varrho^gamma$, $gamma > 1$.

قيم البحث

اقرأ أيضاً

204 - Chengchun Hao 2013
In this paper, we establish a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, the $gamma$-gas law equation of state for $gamma=2$ and the general initial density $ri in H^5$. Because of th e degeneracy of the initial density, we investigate the estimates of the horizontal spatial and time derivatives and then obtain the estimates of the normal or full derivatives through the elliptic-type estimates. We derive a mixed space-time interpolation inequality which play a vital role in our energy estimates and obtain some extra estimates for the space-time derivatives of the velocity in $L^3$.
We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas develope d in the remarkable paper [11] by Coutand and Shkoller to generate an approximate problem with artificial viscosity indexed by $kappa>0$ whose solution converges to that of the MHD equations as $kappato 0$. However, the local well-posedness of the MHD equations is no easy consequence of Euler equations thanks to the strong coupling between the velocity and magnetic fields. This paper is the continuation of the second and third authors previous work [38] in which the a priori energy estimate for incompressible free-boundary MHD with surface tension is established. But the existence is not a trivial consequence of the a priori estimate as it cannot be adapted directly to the approximate problem due to the loss of the symmetric structure.
This article is concerned with the local well-posedness problem for the compressible Euler equations in gas dynamics. For this system we consider the free boundary problem which corresponds to a physical vacuum. Despite the clear physical interest in this system, the prior work on this problemis limited to Lagrangian coordinates, in high regularity spaces. Instead, the objective of the present work is to provide a new, fully Eulerian approach to this problem, which provides a complete, Hadamard style well-posedness theory for this problem in low regularity Sobolev spaces. In particular we give new proofs for both existence, uniqueness, and continuous dependence on the data with sharp, scale invariant energy estimates, and continuation criterion.
318 - Zihua Guo , Kuijie Li 2019
We prove the continuous dependence of the solution maps for the Euler equations in the (critical) Triebel-Lizorkin spaces, which was not shown in the previous works(cite{Ch02, Ch03, ChMiZh10}). The proof relies on the classical Bona-Smith method as c ite{GuLiYi18}, where similar result was obtained in critical Besov spaces $B^1_{infty,1}$.
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition for magnetic field and Dirichlet boundary condition for temperature on the boundary. When the viscosity, heat conductivity and magnetic diffusivity coefficients tend to zero in the same rate, there is a boundary layer that is described by a Prandtl-type system. By applying a coordinate transformation in terms of stream function as motivated by the recent work cite{liu2016mhdboundarylayer} on the incompressible MHD system, under the non-degeneracy condition on the tangential magnetic field, we obtain the local-in-time well-posedness of the boundary layer system in weighted Sobolev spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا