ترغب بنشر مسار تعليمي؟ اضغط هنا

Antibranes dont go black

35   0   0.0 ( 0 )
 نشر من قبل Johan Bl{\\aa}b\\\"ack
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

When D-branes are inserted in flux backgrounds of opposite charge, the resulting solution has a certain singularity in the fluxes. Recently it has been argued, using numerical solutions, that for anti-D3 branes in the Klebanov-Strassler background these singularities cannot be cloaked by a horizon, which strongly suggests they are not physical. In this note we provide an analytic proof that the singularity of all codimension-three antibrane solutions (such as anti-D6 branes in massive type IIA supergravity or anti-D3 branes smeared on the T^3 of R^3xT^3 with fluxes) cannot be hidden behind a horizon, and that the charge of black branes with smooth event horizons must have the same sign as the charge of the flux background. Our result indicates that infinitesimally blackening the antibranes immediately triggers brane-flux annihilation, and strengthens the intuition that antibranes placed in flux with positive charge immediately annihilate against it.

قيم البحث

اقرأ أيضاً

114 - Nam Nguyen 2021
Despite their consequential applications, metastable states of antibranes in warped throats are not yet fully understood. In this thesis, we provide new information on various aspects of these metastable antibranes through applications of the blackfo ld effective theory for higher-dimensional black holes. As concrete examples, we study the conjectured metastable state of polarised anti-D3 branes at the tip of the Klebanov-Strassler (KS) throat in type IIB supergravity and the analogous state of polarised anti-M2 branes at the tip of the Cvetic-Gibbons-Lu-Pope (CGLP) throat in eleven-dimensional supergravity. For anti-D3 branes in KS throat, we provide novel evidence for the existence of the metastable state exactly where no-go theorems are lifted. In the extremal limit, we recover directly in supergravity the metastable states originally discovered by Kachru, Pearson, and Verlinde (KPV). Away from extremality, we uncover a metastable wrapped black NS5 state. We observe that such metastability is lost when the wrapped NS5 is heated sufficiently that its horizon geometry resembles that of a black anti-D3. We study the classical stability of the KPV state under generic long-wavelength deformations. We observe that, with regards to considered perturbations and regime of parameters, the state is classically stable. A study of anti-M2 branes in CGLP throat reveals many similarities to that of the anti-D3 branes. We recover directly in supergravity the Klebanov-Pufu (KP) state at extremality, and our finite temperature results fit suggestively well with known, complementary no-go theorems. However, we discover an unexpected, exotic pattern of thermal transitions of the KP state different from that of the KPV. This thesis contains also a pedagogical introduction to the blackfold formalism, focusing on aspects immediately relevant to applications to metastable antibranes.
Despite constant improvements in machine translation quality, automatic poetry translation remains a challenging problem due to the lack of open-sourced parallel poetic corpora, and to the intrinsic complexities involved in preserving the semantics, style, and figurative nature of poetry. We present an empirical investigation for poetry translation along several dimensions: 1) size and style of training data (poetic vs. non-poetic), including a zero-shot setup; 2) bilingual vs. multilingual learning; and 3) language-family-specific models vs. mixed-multilingual models. To accomplish this, we contribute a parallel dataset of poetry translations for several language pairs. Our results show that multilingual fine-tuning on poetic text significantly outperforms multilingual fine-tuning on non-poetic text that is 35X larger in size, both in terms of automatic metrics (BLEU, BERTScore) and human evaluation metrics such as faithfulness (meaning and poetic style). Moreover, multilingual fine-tuning on poetic data outperforms emph{bilingual} fine-tuning on poetic data.
String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating Forty Years of String Theory, it seems appropriate to step back and ask what we do not understan d. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.
We prove that a very large class of $15502$ general Argyres-Douglas theories cannot admit a UV lagrangian which flows to them via the Maruyoshi-Song supersymmetry enhancement mechanism. We do so by developing a computer program which brute-force list s, for any given 4d $mathcal{N}=2$ superconformal theory $mathcal{T}_{text{IR}}$, all possible UV candidate superconformal lagrangians $mathcal{T}_{text{UV}}$ satisfying some necessary criteria for the supersymmetry enhancement to happen. We argue that this is enough evidence to conjecture that it is impossible, in general, to find new examples of Maruyoshi-Song lagrangians for generalized Argyres-Douglas theories. All lagrangians already known are, on the other hand, recovered and confirmed in our scan. Finally, we also develop another program to compute efficiently Coulomb branch spectrum, masses, couplings and central charges for $(G,G)$ Argyres-Douglas theories of arbitrarily high rank.
The participants in this discussion session of the QCHS 9 meeting were each asked the following question: What would be the most useful piece of information that you could obtain, by whatever means, that would advance your own program, and/or our gen eral understanding of confinement? This proceedings contains a brief summary of each panel members contribution to the discussion, provided by the panel members themselves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا