ترغب بنشر مسار تعليمي؟ اضغط هنا

An effective theory for higher-dimensional black holes and applications to metastable antibranes

115   0   0.0 ( 0 )
 نشر من قبل Nam Nguyen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Nam Nguyen




اسأل ChatGPT حول البحث

Despite their consequential applications, metastable states of antibranes in warped throats are not yet fully understood. In this thesis, we provide new information on various aspects of these metastable antibranes through applications of the blackfold effective theory for higher-dimensional black holes. As concrete examples, we study the conjectured metastable state of polarised anti-D3 branes at the tip of the Klebanov-Strassler (KS) throat in type IIB supergravity and the analogous state of polarised anti-M2 branes at the tip of the Cvetic-Gibbons-Lu-Pope (CGLP) throat in eleven-dimensional supergravity. For anti-D3 branes in KS throat, we provide novel evidence for the existence of the metastable state exactly where no-go theorems are lifted. In the extremal limit, we recover directly in supergravity the metastable states originally discovered by Kachru, Pearson, and Verlinde (KPV). Away from extremality, we uncover a metastable wrapped black NS5 state. We observe that such metastability is lost when the wrapped NS5 is heated sufficiently that its horizon geometry resembles that of a black anti-D3. We study the classical stability of the KPV state under generic long-wavelength deformations. We observe that, with regards to considered perturbations and regime of parameters, the state is classically stable. A study of anti-M2 branes in CGLP throat reveals many similarities to that of the anti-D3 branes. We recover directly in supergravity the Klebanov-Pufu (KP) state at extremality, and our finite temperature results fit suggestively well with known, complementary no-go theorems. However, we discover an unexpected, exotic pattern of thermal transitions of the KP state different from that of the KPV. This thesis contains also a pedagogical introduction to the blackfold formalism, focusing on aspects immediately relevant to applications to metastable antibranes.

قيم البحث

اقرأ أيضاً

149 - Sangmin Choi , Finn Larsen 2021
We review and extend recent progress on the quantum description of near-extremal black holes in the language of effective quantum field theory. With black holes in Einstein-Maxwell theory as the main example, we derive the Schwarzian low energy descr iption of the AdS$_2$ region from a spacetime point of view. We also give a concise formula for the symmetry breaking scale, we relate rotation to supersymmetry, and we discuss quantum corrections to black hole entropy.
When D-branes are inserted in flux backgrounds of opposite charge, the resulting solution has a certain singularity in the fluxes. Recently it has been argued, using numerical solutions, that for anti-D3 branes in the Klebanov-Strassler background th ese singularities cannot be cloaked by a horizon, which strongly suggests they are not physical. In this note we provide an analytic proof that the singularity of all codimension-three antibrane solutions (such as anti-D6 branes in massive type IIA supergravity or anti-D3 branes smeared on the T^3 of R^3xT^3 with fluxes) cannot be hidden behind a horizon, and that the charge of black branes with smooth event horizons must have the same sign as the charge of the flux background. Our result indicates that infinitesimally blackening the antibranes immediately triggers brane-flux annihilation, and strengthens the intuition that antibranes placed in flux with positive charge immediately annihilate against it.
While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a black hole interacting with a time-dependent bac kground scalar field will gain an induced scalar charge. In this paper, we study this phenomenon from an effective field theory (EFT) perspective. We employ a novel approach to constructing the effective point-particle action for the black hole by integrating out a set of composite operators localized on its worldline. This procedure, carried out using the in-in formalism, enables a systematic accounting of both conservative and dissipative effects associated with the black holes horizon at the level of the action. We show that the induced scalar charge is inextricably linked to accretion of the background environment, as both effects stem from the same parent term in the effective action. The charge, in turn, implies that a black hole can radiate scalar waves and will also experience a fifth force. Our EFT correctly reproduces known results in the literature for massless scalars, but now also generalizes to massive real scalar fields, allowing us to consider a wider range of scenarios of astrophysical interest. As an example, we use our EFT to study the early inspiral of a black hole binary embedded in a fuzzy dark matter halo.
In arbitrary dimension, we consider a theory described by the most general quadratic curvature corrections of Einstein gravity together with a self-interacting nonminimally coupled scalar field. This theory is shown to admit five different families o f Lifshitz black holes dressed with a nontrivial scalar field. The entropy of these configurations is microscopically computed by means of a higher-dimensional anisotropic Cardy-like formula where the role of the ground state is played by the soliton obtained through a double analytic continuation. This involves to calculate the correct expressions for the masses of the higher-dimensional Lifshitz black hole as well as their corresponding soliton. The robustness of this Cardy-like formula is checked by showing that the microscopic entropy is in perfect agreement with the gravitational Wald entropy. Consequently, the calculated global charges are compatible with the first law of thermodynamics. We also verify that all the configurations satisfy an anisotropic higher-dimensional version of the Smarr formula.
This is a continuation of our earlier work where we constructed a phenomenologically motivated effective action of the boundary gauge theory at finite temperature and finite gauge coupling on $S^3 times S^1$. In this paper, we argue that this effecti ve action qualitatively reproduces the gauge theory representing various bulk phases of R-charged black hole with Gauss-Bonnet correction. We analyze the system both in canonical and grand canonical ensemble.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا