ترغب بنشر مسار تعليمي؟ اضغط هنا

What we dont know about time

147   0   0.0 ( 0 )
 نشر من قبل Vijay Balasubramanian
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating Forty Years of String Theory, it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.

قيم البحث

اقرأ أيضاً

The participants in this discussion session of the QCHS 9 meeting were each asked the following question: What would be the most useful piece of information that you could obtain, by whatever means, that would advance your own program, and/or our gen eral understanding of confinement? This proceedings contains a brief summary of each panel members contribution to the discussion, provided by the panel members themselves.
In the present paper, we investigate the cosmographic problem using the bias-variance trade-off. We find that both the z-redshift and the $y=z/(1+z)$-redshift can present a small bias estimation. It means that the cosmography can describe the superno va data more accurately. Minimizing risk, it suggests that cosmography up to the second order is the best approximation. Forecasting the constraint from future measurements, we find that future supernova and redshift drift can significantly improve the constraint, thus having the potential to solve the cosmographic problem. We also exploit the values of cosmography on the deceleration parameter and equation of state of dark energy $w(z)$. We find that supernova cosmography cannot give stable estimations on them. However, much useful information was obtained, such as that the cosmography favors a complicated dark energy with varying $w(z)$, and the derivative $dw/dz<0$ for low redshift. The cosmography is helpful to model the dark energy.
121 - Jiri J. Mares 2016
Temperature, the central concept of thermal physics, is one of the most frequently employed physical quantities in common practice. Even though the operative methods of the temperature measurement are described in detail in various practical instruct ions and textbooks, the rigorous treatment of this concept is almost lacking in the current literature. As a result, the answer to a simple question of what the temperature is is by no means trivial and unambiguous. There is especially an appreciable gap between the temperature as introduced in the frame of statistical theory and the only experimentally observable quantity related to this concept, phenomenological temperature. Just the logical and epistemological analysis of the present concept of phenomenological temperature is the kernel of the contribution.
We investigate possibility of emission of the bremsstrahlung photons in nuclear reactions with hypernuclei for the first time. A new model of the bremsstrahlung emission which accompanies interactions between $alpha$ particles and hypernuclei is cons tructed, where a new formalism for the magnetic momenta of nucleons and hyperon inside hypernucleus is added. For first calculations, we choose $alpha$ decay of the normal nucleus $^{210}{rm Po}$ and the hypernucleus $^{211}_{Lambda}{rm Po}$. We find that (1) emission for the hypernucleus $^{211}_{Lambda}{rm Po}$ is larger than for normal nucleus $^{210}{rm Po}$, (2) difference between these spectra is small. We propose a way how to find hypernuclei, where role of hyperon is the most essential in emission of bremsstrahlung photons during $alpha$ decay. As demonstration of such a property, we show that the spectra for the hypernuclei $^{107}_{Lambda}{rm Te}$ and $^{109}_{Lambda}{rm Te}$ are essentially larger than the spectra for the normal nuclei $^{106}{rm Te}$ and $^{108}{rm Te}$. Such a difference is explained by additional contribution of emission to the full bremsstrahlung, which is formed by magnetic moment of hyperon inside hypernucleus. The bremsstrahlung emission formed by such a mechanism, is of the magnetic type. A new formula for fast estimations of bremsstrahlung spectra for even-even hypernuclei is proposed, where role of magnetic moment of hyperon of hypernucleus in formation of the bremsstrahlung emission is shown explicitly. Such an analysis opens possibility of new experimental study of properties of hypernuclei via bremsstrahlung study.
We present updated values for the mass-mixing parameters relevant to neutrino oscillations, with particular attention to emerging hints in favor of theta_13>0. We also discuss the status of absolute neutrino mass observables, and a possible approach to constrain theoretical uncertainties in neutrinoless double beta decay. Desiderata for all these issues are also briefly mentioned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا