ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a complete understanding of pseudogap and pairing mechanisms in high-temperature superconducting cuprates

143   0   0.0 ( 0 )
 نشر من قبل Takashi Uchino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takashi Uchino




اسأل ChatGPT حول البحث

Unveiling the nature of the pseudogap and its relation to both superconductivity and antiferromagnetic Mott insulators, the pairing mechanism, and a non-Fermi liquid phase is a key issue for understanding high temperature superconductivity in cuprates. A number of experimental results gathered especially in recently years have revealed an unexpected inhomogeneous nature of cuprates at the nanoscale, indicating the fundamental inapplicability of the conventional theories based on homogeneous systems. Here we show a microscopic model of pseudogap and pairing mechanisms on the basis of the consideration of the spin state around a bound hole in a CuO2 plane and the resulting magnetic orders, leading eventually to the spin-Peierls distortion responsible for the Cooper pair formation. The present model fits and accounts for the accumulated experimental findings reported previously for cuprates, including stripe-like electronic order, breaking of the rotational symmetry, and the so-called 1/8 anomaly. We believe that the present model can help to develop a complete theoretical framework applicable to a large family of high-temperature superconductors, including ferropnictides and ferrochalcogenides.



قيم البحث

اقرأ أيضاً

Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th e temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairi ng in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather then preformed pairs. Pairing does occur below Tpair~150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates artificial Fermi arcs for Tc<T<Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. We demonstrate that these findings resolve a number of seemingly contradictory scenarios.
The nature of the effective interaction responsible for pairing in the high-temperature superconducting cuprates remains unsettled. This question has been studied extensively using the simplified single-band Hubbard model, which does not explicitly c onsider the orbital degrees of freedom of the relevant CuO$_2$ planes. Here, we use a dynamic cluster quantum Monte Carlo approximation to study the orbital structure of the pairing interaction in the three-band Hubbard model, which treats the orbital degrees of freedom explicitly. We find that the interaction predominately acts between neighboring copper orbitals, but with significant additional weight appearing on the surrounding bonding molecular oxygen orbitals. By explicitly comparing these results to those from the simpler single-band Hubbard model, our study provides strong support for the single-band framework for describing superconductivity in the cuprates.
173 - A. S. Alexandrov 2011
Along with some other researches we have realised that the true origin of high-temperature superconductivity should be found in the strong Coulomb repulsion combined with a significant electronphonon interaction. Both interactions are strong (on the order of 1 eV) compared with the low Fermi energy of doped carries which makes the conventional BCS-Eliashberg theory inapplicable in cuprates and related doped insulators. Based on our recent analytical and numerical results I argue that high-temperature superconductivity from repulsion is impossible for any strength of the Coulomb interaction. Major steps of our alternative polaronic theory are outlined starting from the generic Hamiltonian with the unscreened (bare) Coulomb and electron-phonon interactions accounting for critical temperatures of high-temperature superconductors without any adjustable parameters.
We express the superconducting gap, $Delta(T)$, in terms of thermodynamic functions in both $s$- and d-wave symmetries. Applying to Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ and Y$_{0.8}$Ca$_{0.2}$Ba$_2$Cu$_3$O$_{7-delta}$ we find that for all dopings $Delta (T)$ persists, as a partial gap, high above $T_c$ due to strong superconducting fluctuations. Therefore in general two gaps are present above $T_c$, the superconducting gap and the pseudogap, effectively reconciling two highly polarized views concerning pseudogap physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا