ترغب بنشر مسار تعليمي؟ اضغط هنا

Phononic pairing glue in cuprates and related high-temperature superconductors

134   0   0.0 ( 0 )
 نشر من قبل A. S. Alexandrov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. S. Alexandrov




اسأل ChatGPT حول البحث

Along with some other researches we have realised that the true origin of high-temperature superconductivity should be found in the strong Coulomb repulsion combined with a significant electronphonon interaction. Both interactions are strong (on the order of 1 eV) compared with the low Fermi energy of doped carries which makes the conventional BCS-Eliashberg theory inapplicable in cuprates and related doped insulators. Based on our recent analytical and numerical results I argue that high-temperature superconductivity from repulsion is impossible for any strength of the Coulomb interaction. Major steps of our alternative polaronic theory are outlined starting from the generic Hamiltonian with the unscreened (bare) Coulomb and electron-phonon interactions accounting for critical temperatures of high-temperature superconductors without any adjustable parameters.

قيم البحث

اقرأ أيضاً

A grand challenge in many-body quantum physics is to explain the apparent connection between quantum criticality and high-temperature superconductivity in the cuprates and similar systems, such as the iron pnictides and chalcogenides. Here we argue t hat the quantum-critical regime plays an essential role in activating a strong-pairing mechanism: although pairing bosons create a symmetry-breaking instability which suppresses pairing, the combination of these broken-symmetry states within the critical regime can restore this symmetry for the paired quasiparticles. This condition is shown to be met within a large-U ansatz. A hidden quantum phase transition then arises between a Fermi-liquid and a non-Fermi-liquid broken-symmetry striped state, and a critical regime in which the broken-symmetry states are combined.
Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamen- tal step toward this goal would be to identify the relative weight of the electr onic and phononic contributions to the overall frequency (Omega) dependent bosonic function, Pi(Omega). We perform optical spectroscopy on Bi2212 crystals with simultaneous time- and frequency-resolution; this technique allows us to disentangle the electronic and phononic contributions by their different temporal evolution. The strength of the interaction ({lambda}~1.1) with the electronic excitations and their spectral distribution fully account for the high critical temperature of the superconducting phase transition.
348 - C. C. Tsuei 2004
Although initially quite controversial, it has been widely accepted that the Cooper pairs in optimally doped cuprate superconductors have predominantly dx2-y2 wavefunction symmetry. The controversy has now shifted to whether the high-Tc pairing symme try changes away from optimal doping. Here we present phase-sensitive tricrystal experiments on three cuprate systems: Y0.7Ca0.3Ba2Cu3O7-x (Ca-doped Y-123), La2-xSrxCuO4 (La-214) and Bi2Sr2CaCu2O8+x (Bi-2212),with doping levels covering the underdoped, optimal and overdoped regions. Our work implies that time-reversal invariant, predominantly dx2-y2 pairing symmetry is robust over a large variation in doping, and underscores the important role of on-site Coulomb repulsion in the making of high-temperature superconductivity.
In strongly correlated materials the electronic and optical properties are significantly affected by the coupling of fermionic quasiparticles to different degrees of freedom, such as lattice vibrations and bosonic excitations of electronic origin. Br oadband ultrafast spectroscopy is emerging as the premier technique to unravel the subtle interplay between quasiparticles and electronic or phononic collective excitations, by their different characteristic timescales and spectral responses. By investigating the femtosecond dynamics of the optical properties of Y-Bi2212 crystals over the 0.5-2 eV energy range, we disentangle the electronic and phononic contributions to the generalized electron-boson Eliashberg function, showing that the spectral distribution of the electronic excitations, such as spin fluctuations and current loops, and the strength of their interaction with quasiparticles can account for the high critical temperature of the superconducting phase transition. Finally, we discuss how the use of this technique can be extended to the underdoped region of the phase diagram of cuprates, in which a pseudogap in the quasiparticle density of states opens. The microscopic modeling of the interaction of ultrashort light pulses with unconventional superconductors will be one of the key challenges of the next-years materials science, eventually leading to the full understanding of the role of the electronic correlations in controlling the dynamics on the femtosecond timescale.
We address the origin of the Cooper pairs in high-$T_c$ cuprates and the unique nature of the superconducting (SC) condensate. Itinerant holes in an antiferromagnetic background form pairs spontaneously, without any `glue, defining a new quantum obje ct the `pairon. In the incoherent pseudogap phase, above $T_c$ or within the vortex core, the pairon binding energies are distributed statistically, forming a `Cooper-pair glass. Contrary to conventional SC, it is the mutual pair-pair interaction that is responsable for the condensation. We give a natural explanation for the {it ergodic rigidity} of the excitation gap, being uniquely determined by the carrier concentration $p$ and $J$. The phase diagram can be understood, without spin fluctuations, in terms of a single energy scale $sim J$, the exchange energy at the metal-insulator transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا