ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of the superconducting energy gap and pseudogap above and below the transition temperature of superconducting cuprates

202   0   0.0 ( 0 )
 نشر من قبل Jeff Tallon
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We express the superconducting gap, $Delta(T)$, in terms of thermodynamic functions in both $s$- and d-wave symmetries. Applying to Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ and Y$_{0.8}$Ca$_{0.2}$Ba$_2$Cu$_3$O$_{7-delta}$ we find that for all dopings $Delta(T)$ persists, as a partial gap, high above $T_c$ due to strong superconducting fluctuations. Therefore in general two gaps are present above $T_c$, the superconducting gap and the pseudogap, effectively reconciling two highly polarized views concerning pseudogap physics.



قيم البحث

اقرأ أيضاً

Raman studies on Ca4Al2O5.7Fe2As2 superconductor in the temperature range of 5 K to 300 K, covering the superconducting transition temperature Tc ~ 28.3 K, reveal that the Raman mode at ~ 230 cm-1 shows a sharp jump in frequency by ~ 2 % and linewidt h increases by ~ 175 % at To ~ 60 K. Below To, anomalous softening of the mode frequency and a large decrease by ~ 10 cm-1 in the linewidth is observed. These precursor effects at T0 (~ 2Tc) are attributed to significant superconducting fluctuations, possibly enhanced due to reduced dimensionality arising from weaked coupling between the well separated (~ 15 {AA}) Fe-As layers in the unit cell. A large blue-shift of the mode frequency between 300 K to 60 K (~7%) indicates strong spin-phonon coupling in this superconductor.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th e temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
171 - Matthias Opel 1999
We present results of Raman scattering experiments in differently doped Bi-2212 single crystals. Below Tc the spectra show pair-breaking features in the whole doping range. The low frequency power laws confirm the existence of a $d_{x^2-y^2}$-wave or der parameter. In the normal state between Tc and T* = 200K we find evidence for a pseudogap in B2g symmetry. Upon doping its effect on the spectra decreases while its energy scale appears to be unchanged.
149 - M. H. Pan , X. B. He , G. R. Li 2008
The discovery of superconductivity with a critical temperature exceeding 55 K in the iron-oxypnictides and related compounds has quite suddenly given the community a new set of materials - breaking the tyranny of copper. This new class of materials r aises fundamental questions related to the origin of the electron pairing in the superconducting state and to the similarity to superconductivity in the cuprates. Here, we report spatially resolved measurements using scanning tunneling microscopy/spectroscopy (STM/STS) of the newly discovered iron-based layered superconductor NdFeAsO0.86F0.14 (Tc = 48 K) as a function of temperature. The tunneling spectra at 17 K show a suppression of spectral intensity within +/- 10 meV, indicative of the opening of the superconducting gap (SG). Below Tc, the sample exhibits two characteristic gaps - a large one (18 meV) and a small one (9 meV) - existing in different spatial locations. Both gaps are closed above Tc at the bulk Tc, but only the small gap can be fitted with a superconducting gap function. This gap displays a BCS - like order parameter. Above Tc, at the same location where the small gap was observed, a pseudogap (PG) opens abruptly at a temperature just above Tc and closes at 120 K. In contrast to the cuprates, the SG and PG have competing order parameters.
155 - Takashi Uchino 2013
Unveiling the nature of the pseudogap and its relation to both superconductivity and antiferromagnetic Mott insulators, the pairing mechanism, and a non-Fermi liquid phase is a key issue for understanding high temperature superconductivity in cuprate s. A number of experimental results gathered especially in recently years have revealed an unexpected inhomogeneous nature of cuprates at the nanoscale, indicating the fundamental inapplicability of the conventional theories based on homogeneous systems. Here we show a microscopic model of pseudogap and pairing mechanisms on the basis of the consideration of the spin state around a bound hole in a CuO2 plane and the resulting magnetic orders, leading eventually to the spin-Peierls distortion responsible for the Cooper pair formation. The present model fits and accounts for the accumulated experimental findings reported previously for cuprates, including stripe-like electronic order, breaking of the rotational symmetry, and the so-called 1/8 anomaly. We believe that the present model can help to develop a complete theoretical framework applicable to a large family of high-temperature superconductors, including ferropnictides and ferrochalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا