ﻻ يوجد ملخص باللغة العربية
Random numbers represent an indispensable resource for many applications. A recent remarkable result is the realization that non-locality in quantum mechanics can be used to certify genuine randomness through Bells theorem, producing reliable random numbers in a device independent way. Here, we explore the contextuality aspect of quantum mechanics and show that true random numbers can be generated using only single qutrit (three-state systems) without entanglement and non-locality. In particular, we show that any observed violation of the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality [Phys. Rev. Lett. 101, 20403 (2008)] provides a positive lower bound on genuine randomness. As a proof-of-concept experiment, we demonstrate with photonic qutrits that at least 5246 net true random numbers are generated with a confidence level of 99.9%.
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numb
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with
The notion of contextuality, which emerges from a theorem established by Simon Kochen and Ernst Specker (1960-1967) and by John Bell (1964-1966), is certainly one of the most fundamental aspects of quantum weirdness. If it is a questioning on scholas
It is well known that certain measurement scenarios behave in a way which can not be explained by classical theories but by quantum theories. This behaviours are usually studied by Bell or non-contextuality (NC) inequalities. Knowing the maximal clas