ترغب بنشر مسار تعليمي؟ اضغط هنا

omega/T scaling of the optical conductivity in strongly correlated layered cobalt oxide

132   0   0.0 ( 0 )
 نشر من قبل Raymond Fr\\'esard
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report infrared spectroscopic properties of the strongly correlated layered cobalt oxide [BiBa$_{0.66}$K$_{0.36}$O$_2$]CoO$_2$. These measurements performed on single crystals allow us to determine the optical conductivity as a function of temperature. In addition to a large temperature dependent transfer of spectral weight, an unconventional low energy mode is found. We show that both its frequency and damping scale as the temperature itself. In fact, a basic analysis demonstrates that this mode fully scales onto a function of $omega$/T up to room temperature. This behavior suggests low energy excitations of non-Fermi liquid type originating from quantum criticality.



قيم البحث

اقرأ أيضاً

We report on susceptibility measurements in the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2, which demonstrate the existence of a magnetic quantum critical point (QCP) governing the electronic properties. The investigated low frequ ency susceptibility displays a scaling behavior with both the temperature T and the magnetic field B ranging from the high-T non-Fermi liquid down to the low-T Fermi liquid. Whereas the inferred scaling form can be discussed within the standard framework of the quantum critical phenomena, the determined critical exponents suggest an unconventional magnetic QCP of a potentially generic type. Accordingly, these quantum critical fluctuations account for the anomalous logarithmic temperature dependence of the thermopower. This result allows us to conjecture that quantum criticality can be an efficient source of enhanced thermopower.
We have investigated the low temperature specific heat properties as a function of magnetic field in the strongly correlated layered cobalt oxide [BiBa$_{0.66}$K$_{0.36}$O$_2$]CoO$_2$. These measurements reveal two kinds of magnetic field dependent c ontributions in qualitative agreement with the presence of a previously inferred magnetic Quantum Critical Point (QCP). First, the coefficient of the low temperature T$^3$ behavior of the specific heat turns out to sizeably decrease near a magnetic field consistent with the critical value reported in a recent paper. In addition, a moderate but significant enhancement of the Sommerfeld coefficient is found in the vicinity of the QCP suggesting a slight increase of the electronic effective mass. This result contrasts with the divergent behavior of the previously reported Pauli susceptibility. Thus, a strongly enhanced Wilson ratio is deduced, suggesting efficient ferromagnetic fluctuations in the Fermi liquid regime which could explain the unusual magnetic field dependent specific heat. As a strong check, the high magnetic field Wilson ratio asymptotically recovers the universal limit of the local Fermi liquid against ferromagnetism.
Thermoelectric properties of the layered cobalt oxide system LixCoO2 were investigated in a wide range of Li composition, 0.98 >= x >= 0.35. Single-phase bulk samples of LixCoO2 were successfully obtained through electrochemical deintercalation of Li from the pristine LiCoO2 phase. While LixCoO2 with x >= 0.94 is semiconductive, the highly Li-deficient phase (0.75 >= x >= 0.35) exhibits metallic conductivity. The magnitude of Seebeck coefficient at 293 K (S293K) significantly depends on the Li content (x). The S293K value is as large as +70 ~ +100 uV/K for x >= 0.94, and it rapidly decreases from +90 uV/K to +10 uV/K as x is lowered within a Li composition range of 0.75 >= x >= 0.50. This behavior is in sharp contrast to the results of x <= 0.40 for which the S293K value is small and independent of x (+10 uV/K), indicating that a discontinuous change in the thermoelectric characteristics takes place at x = 0.40 ~ 0.50. The unusually large Seebeck coefficient and metallic conductivity are found to coexist in a narrow range of Li composition at about x = 0.75. The coexistence, which leads to an enhanced thermoelectric power factor, may be attributed to unusual electronic structure of the two-dimensional CoO2 block.
155 - J. Reul , L. Fels , N. Qureshi 2013
Compounds with intermediate-size transition metals such as Fe or Mn are close to the transition between charge-transfer systems and Mott-Hubbard systems. We study the optical conductivity sigma(omega) of insulating layered LaSrFeO_4 in the energy ran ge 0.5 - 5.5 eV from 15 K to 250 K by the use of spectroscopic ellipsometry in combination with transmittance measurements. A multipeak structure is observed in both sigma^a(omega) and sigma^c(omega). The layered structure gives rise to a pronounced anisotropy, thereby offering a means to disentangle Mott-Hubbard and charge-transfer absorption bands. We find strong evidence that the lowest dipole-allowed excitation in LaSrFeO_4 is of Mott-Hubbard type. This rather unexpected result can be attributed to Fe 3d - O 2p hybridization and in particular to the layered structure with the associated splitting of the e_g level. In general, Mott-Hubbard absorption bands may show a strong dependence on temperature. This is not the case in LaSrFeO_4, in agreement with the fact that spin-spin and orbital-orbital correlations between nearest neighbors do not vary strongly below room temperature in this compound with a high-spin 3d^5 configuration and a Neel temperature of T_N = 366 K.
Correlations between electrons and the effective dimensionality are crucial factors that shape the properties of an interacting electron system. For example, the onsite Coulomb repulsion, U, may inhibit, or completely block the intersite electron hop ping, t, and depending on the ratio U/t, a material may be a metal or an insulator. The correlation effects increase as the number of allowed dimensions decreases. In 3D systems, the low energy electronic states behave as quasiparticles (QP), while in 1D systems, even weak interactions break the quasiparticles into collective excitations. Dimensionality is particularly important for a class of new exotic low-dimensional materials where 1D or 2D building blocks are loosely connected into a 3D whole. Small interactions between the blocks may induce a whole variety of unusual transitions. Here, we examine layered systems that in the direction perpendicular to the layers display a crossover from insulating-like, at high temperatures, to metallic-like character at low temperatures, while being metallic over the whole temperature range within the layers. We show that this change in effective dimensionality correlates with the existence or non-existence of coherent quasiparticles within the layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا