ترغب بنشر مسار تعليمي؟ اضغط هنا

From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide

109   0   0.0 ( 0 )
 نشر من قبل Patrice Limelette
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on susceptibility measurements in the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2, which demonstrate the existence of a magnetic quantum critical point (QCP) governing the electronic properties. The investigated low frequency susceptibility displays a scaling behavior with both the temperature T and the magnetic field B ranging from the high-T non-Fermi liquid down to the low-T Fermi liquid. Whereas the inferred scaling form can be discussed within the standard framework of the quantum critical phenomena, the determined critical exponents suggest an unconventional magnetic QCP of a potentially generic type. Accordingly, these quantum critical fluctuations account for the anomalous logarithmic temperature dependence of the thermopower. This result allows us to conjecture that quantum criticality can be an efficient source of enhanced thermopower.



قيم البحث

اقرأ أيضاً

We have investigated the low temperature specific heat properties as a function of magnetic field in the strongly correlated layered cobalt oxide [BiBa$_{0.66}$K$_{0.36}$O$_2$]CoO$_2$. These measurements reveal two kinds of magnetic field dependent c ontributions in qualitative agreement with the presence of a previously inferred magnetic Quantum Critical Point (QCP). First, the coefficient of the low temperature T$^3$ behavior of the specific heat turns out to sizeably decrease near a magnetic field consistent with the critical value reported in a recent paper. In addition, a moderate but significant enhancement of the Sommerfeld coefficient is found in the vicinity of the QCP suggesting a slight increase of the electronic effective mass. This result contrasts with the divergent behavior of the previously reported Pauli susceptibility. Thus, a strongly enhanced Wilson ratio is deduced, suggesting efficient ferromagnetic fluctuations in the Fermi liquid regime which could explain the unusual magnetic field dependent specific heat. As a strong check, the high magnetic field Wilson ratio asymptotically recovers the universal limit of the local Fermi liquid against ferromagnetism.
We report infrared spectroscopic properties of the strongly correlated layered cobalt oxide [BiBa$_{0.66}$K$_{0.36}$O$_2$]CoO$_2$. These measurements performed on single crystals allow us to determine the optical conductivity as a function of tempera ture. In addition to a large temperature dependent transfer of spectral weight, an unconventional low energy mode is found. We show that both its frequency and damping scale as the temperature itself. In fact, a basic analysis demonstrates that this mode fully scales onto a function of $omega$/T up to room temperature. This behavior suggests low energy excitations of non-Fermi liquid type originating from quantum criticality.
Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crys tal filed splitting bring about non-monotonic temperature dependence of the thermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.
The search for semiconductors with high thermoelectric figure of merit has been greatly aided by theoretical modeling of electron and phonon transport, both in bulk materials and in nanocomposites. Recent experiments have studied thermoelectric trans port in ``strongly correlated materials derived by doping Mott insulators, whose insulating behavior without doping results from electron-electron repulsion, rather than from band structure as in semiconductors. Here a unified theory of electrical and thermal transport in the atomic and ``Heikes limit is applied to understand recent transport experiments on sodium cobaltate and other doped Mott insulators at room temperature and above. For optimal electron filling, a broad class of narrow-bandwidth correlated materials are shown to have power factors (the electronic portion of the thermoelectric figure of merit) as high at and above room temperature as in the best semiconductors.
Iridates provide a fertile ground to investigate correlated electrons in the presence of strong spin-orbit coupling. Bringing these systems to the proximity of a metal-insulator quantum phase transition is a challenge that must be met to access quant um critical fluctuations with charge and spin-orbital degrees of freedom. Here, electrical transport and Raman scattering measurements provide evidence that a metal-insulator quantum critical point is effectively reached in 5 % Co-doped Sr$_2$IrO$_4$ with high structural quality. The dc-electrical conductivity shows a linear temperature dependence that is successfully captured by a model involving a Co acceptor level at the Fermi energy that becomes gradually populated at finite temperatures, creating thermally-activated holes in the $J_{text {eff}}=1/2$ lower Hubbard band. The so-formed quantum critical fluctuations are exceptionally heavy and the resulting electronic continuum couples with an optical phonon at all temperatures. The magnetic order and pseudospin-phonon coupling are preserved under the Co doping. This work brings quantum phase transitions, iridates and heavy-fermion physics to the same arena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا